基于灰度世界、完美反射、动态阈值等图像自动白平衡算法的原理、实现及效果...

本文介绍了三种图像自动白平衡算法:灰度世界算法,通过计算平均值实现快速调整;完美反射算法,基于最亮点假设进行白平衡;动态阈值算法,结合区域划分和白点检测进行色彩校正。每种算法都有其特点和适用场景,文中还探讨了算法的优化与效果对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     白平衡是电视摄像领域一个非常重要的概念,通过它可以解决色彩还原和色调处理的一系列问题。白平衡是随着电子影像再现色彩真实而产生的,在专业摄像领域白平衡应用的较早,现在家用电子产品(家用摄像机、数码照相机)中也广泛地使用,然而技术的发展使得白平衡调整变得越来越简单容易,但许多使用者还不甚了解白平衡的工作原理,理解上存在诸多误区。它是实现摄像机图像能精确反映被摄物的色彩状况,有手动白平衡和自动白平衡等方式,本文简要的介绍了几种自动白平衡算法。

一、原始的灰度世界算法

  灰度世界算法(Gray World)是以灰度世界假设为基础的,该假设认为对于一幅有着大量色彩变化的图像, R、 G、 B 三个分量的平均值趋于同一个灰度K。一般有两种方法来确定该灰度。

        (1)直接给定为固定值, 取其各通道最大值的一半,即取为127或128;

       (2)令 K = (Raver+Gaver+Baver)/3,其中Raver,Gaver,Baver分别表示红、 绿、 蓝三个通道的平均值。

         算法的第二步是分别计算各通道的增益:

             Kr=K/Raver;

       Kg=K/Gaver;

             Kb=K/Baver;

         算法第三步为根据Von Kries 对角模型,对于图像中的每个像素R、G、B,计算其结果值:

             Rnew = R * Kr;

       Gnew = G * Kg;

       Bnew = B * Kb;

         对于上式,计算中可能会存在溢出(>255,不会出现小于0的)现象,处理方式有两种。

         a、 直接将像素设置为255,这可能会造成图像整体偏白。

         b、 计算所有Rnew、Gnew、Bnew的最大值,然后利用该最大值将将计算后数据重新线性映射到[0,255]内。实践证明这种方式将会使图像整体偏暗,建议采用第一种方案。

        一般来说,灰度世界算法的效果还是比较好的呢,并且该算法的执行速度非常之快,目前也存在了不少对该算法进行改进的效果,有时间我在整理一下。

         

         

         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值