条件随机场(CRF)原理和实现

本文深入探讨了对数域操作函数的实现,包括指数、对数及矩阵运算,同时详细介绍了条件随机场的函数应用,如读取语料库、特征提取和期望值计算等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

目录(?)[+]

 

Flag Counter

作者:金良(golden1314521@gmail.com) csdn博客: http://blog.youkuaiyun.com/u012176591

对数域操作函数

class Logspace:
    def __init__(self): self.LOGZERO =np.nan def eexp(self,x): if np.isnan(x): return 0 else: return np.exp(x) def eln(self,x): if x == 0: return self.LOGZERO elif x>0: return np.log(x) else: print 'Wrong!!!\n\t negative input error' return np.nan def elnsum(self,elnx,elny): if np.isnan(elnx): return elny elif np.isnan(elny): return elnx elif elnx > elny: return elnx + self.eln(1+np.exp(elny-elnx)) else: return elny + self.eln(1+np.exp(elnx-elny)) def elnproduct(self,elnx,elny): if np.isnan(elnx) or np.isnan(elny): return self.LOGZERO else: return elnx + elny def elnmatprod(self,elnx,elny): #array([[ 0.]])其size是2 xsize = np.size(np.shape(elnx)) ysize = np.size(np.shape(elny)) if xsize == 1 and ysize == 1: r = self.LOGZERO for i in range(np.shape(elnx)[0]): r = self.elnsum(r,self.elnproduct(elnx[i],elny[i])) return r elif xsize == 1 and not ysize == 1: n = np.shape(elny)[1] r = np.zeros(n) for i in range(n): r[i] = self.elnmatprod(elnx,elny[:,i]) return r elif not xsize == 1 and ysize == 1: n = np.shape(elnx)[0] r = np.zeros(n) for i in range(n): r[i] = self.elnmatprod(elnx[i,:],elny) return r else: m,n= np.shape(elnx) p = np.shape(elny)[1] r = np.zeros((m,p)) for i in range(m): for j in range(p): r[i][j] = self.elnmatprod(elnx[i,:],elny[:,j]) return r def eexpmat(self,elny): expy = np.copy(elny) if np.size(np.shape(elny)) == 1: for i in range(np.shape(elny)[0]): expy[i] = self.eexp(expy[i]) else: for i in range(np.shape(elny)[0]): for j in range(np.shape(elny)[1]): expy[i][j] = self.eexp(expy[i][j]) return expy def elnmat(self,x): elnx = np.copy(x) if np.size(np.shape(x)) == 1: for i in range(np.shape(x)[0]): elnx[i] = self.eln(x[i]) else: for i in range(np.shape(x)[0]): for j in range(np.shape(x)[1]): elnx[i,j] = self.eln(x[i,j]) return elnx 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80

测试举例

logspace = Logspace()
M1 = np.array([1,0.5])
M2 = np.array([[1.3,1.5],[1.8,0.5]]) M3 = np.array([[0.8,1.5],[1.8,0.7]]) M4 = np.array([0,0]) print logspace.eexpmat(logspace.elnmatprod(M1,M2)) print np.dot(logspace.eexpmat(M1),logspace.eexpmat(M2))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

[ 19.94836491 14.90077579] 
[ 19.94836491 14.90077579]

条件随机场的函数

def read_corps(corpsfile='testchunk.data'): #http://www.chokkan.org/software/crfsuite/tutorial.html,该页面有两个网址可下载数据集,该数据集量很大 #http://blog.dpdearing.com/2011/12/opennlp-part-of-speech-pos-tags-penn-english-treebank/ tagids = defaultdict(lambda: len(tagids)) tagids["<S>"] = 0 corps=[] onesentence = [] words = [ "<S>" ] tags = [ 0 ] #wordnumcount = 0 with open(corpsfile,'r') as f: for line in f: if len(line)<=1: pass elif line != '. . O\n': # '. . O\n'表示一句话结束,当一句话未结束则将该单词加入列表onesentence onesentence.append(line) else: #如果一句话结束,则对该句话的所有出现的单词进行处理,将处理结果存入列表corps for texts in onesentence: #wordnumcount += 1 w_t = texts.strip().split(" ") #print w_t try: #由于表示数字的字符串变化较多,为了减少其干扰,这里将其检测出来并替换掉 float(w_t[0].strip().replace(',','')); #print w_t words.append('#CD#') except: words.append(w_t[0].lower()) #if w_t[1] in{ '``',',',"''",'$','#',')','('}: # print w_t tags.append(tagids[w_t[1]]) words.append("<S>") #words是一句话的单词组成的列表 tags.append(0) #tags是一句话的标注组成的列表,与单词列表words一一对应 if np.shape(words)[0] > 2: #排除掉空句子 corps.append((words,tags)) #对onesentence,words和tags重新初始化 onesentence = [] words = [ "<S>" ] tags = [ 0 ] #print '一共出现的单词个数:'+np.str(wordnumcount) #一共出现的单词个数:40377 return corps,tagids def getfeatureTS(corps): featuresets = set() #特征的集合 featureT = [] #转移特征的列表,比如列表元素('T', 2, 3)表示从状态2转到特征3 featureS = [] #状态特征的列表,比如列表元素('S','Confidence', 1) for corp in corps: for i in range(np.shape(corp[0])[0]): if corp[0][i] == '<S>': continue if ('S',corp[0][i],corp[1][i]) not in featuresets: featuresets.add(('S',corp[0][i],corp[1][i])) featureS.append(('S',corp[0][i],corp[1][i])) if corp[0][i-1] != '<S>': if ('T',corp[1][i-1],corp[1][i]) not in featuresets: featuresets.add(('T',corp[1][i-1],corp[1][i])) featureT.append(('T',corp[1][i-1],corp[1][i])) featureTS = featureT+featureS words2tagids = words2tagidfromfeatureS(featureS) return featureTS,words2tagids def getpriorfeatureE(corps,featureTS): #计算先验特征期望值 N = np.shape(corps)[0] #训练样本数 K = np.shape(featureTS)[0] #特征数 priorfeatureE = np.zeros(K) for corp in corps: for i in range(np.shape(corp[0])[0]): if corp[0][i] == '<S>': continue try: idex = featureTS.index(('S', corp[0][i], corp[1][i])) priorfeatureE[idex] += 1.0 except: pass try: idex = featureTS.index(('T', corp[1][i-1], corp[1][i])) priorfeatureE[idex] += 1.0 except: pass priorfeatureE /=N #plt.plot(priorfeatureE) #从特征的先验期望值可以看出无论是转移特征(从横坐标0开始)还是状态特征(从横坐标318开始),先被记录的先验期望值越大 return priorfeatureE def words2tagidfromfeatureS(featureS): #统计所有单词分别对应的词性列表 words2tagids = {} for feature in featureS: word = feature[1] state = feature[2] if word in words2tagids: words2tagids[word].append(state) else: words2tagids[word] = [state] #lennums列表统计单词对应的词性的长度的分布 #lennums = [[lenlist.count(i) for i in range(1,max(lenlist)+1)] # for lenlist in [[len(words2tagids[i]) for i in words2tagids]]][0] #lennums = [3760, 389, 32, 1] return words2tagids def getpostfeatureE(weights,corps,featureTS,words2tagids): K = np.shape(featureTS)[0] #特征数 postfeatureE = np.zeros(K) #特征的后验期望值 N = np.shape(corps)[0] for corpidx in range(N): corp = corps[corpidx][0][1:-1] lencorp = np.size(corp) #语料长度,即句子中的单词数 Mlist = {} Mlist['mat'] = ['']*(lencorp+1) Mlist['dim'] = [words2tagids[corp[i]] for i in range(lencorp)] Mlist['len'] = [np.size(words2tagids[corp[i]]) for i in range(lencorp)] for i in range(lencorp+1): if i == 0:#第一个矩阵,只有状态特征的行向量 d = Mlist['len'][0] Mlist['mat'][i] = np.zeros((1,d)) for j in range(d): Mlist['mat'][i][0,j] = weights[featureTS.index(('S', corp[0], words2tagids[corp[0]][j]))] continue if i == lencorp:#最后一个矩阵,元素为0的列向量矩阵 Mlist['mat'][i] = np.zeros((Mlist['len'][-1],1)) continue #既非第一个矩阵,亦非第二个矩阵,每个元素要计算状态特征和转移特征 Mlist['mat'][i] = np.zeros((Mlist['len'][i-1],Mlist['len'][i])) for d1 in range(Mlist['len'][i-1]): for d2 in range(Mlist['len'][i]): id1 = words2tagids[corp[i-1]][d1] id2 = words2tagids[corp[i]][d2] try: Sweight = weights[featureTS.index(('S', corp[i], id2))] except: Sweight = 0 try: Tweight = weights[featureTS.index(('T', id1, id2))] except: Tweight = 0 Mlist['mat'][i][d1,d2] = Sweight + Tweight #return Mlist,corps[0] #return 0 z = np.array([[0]]) for i in range(lencorp+1): z = logspace.elnmatprod(z,Mlist['mat'][i]) Alphalist = ['']*(lencorp+2) Betalist = ['']*(lencorp+2) Alphalist[0] = np.zeros((
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值