理解一下generative learning and discriminative learning algorithm

本文对比了判别式学习算法与生成式学习算法的工作原理。判别式算法如逻辑回归和感知器通过寻找决策边界来区分不同类别;而生成式算法则通过建立每个类别的模型,比较新样本更接近哪个模型来进行分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a training set, an algorithm like logistic regression or the perceptron algorithm (basically) tries to find a straight line—that is, a decision boundary—that separates the elephants and dogs. Then, to classify a new animal as either an elephant or a dog, it checks on which side of the decision boundary it falls, and makes its prediction accordingly. We call these discriminative learning algorithm.

Here’s a different approach. First, looking at elephants, we can build a model of what elephants look like. Then, looking at dogs, we can build a separate model of what dogs look like. Finally, to classify a new animal, we can match the new animal against the elephant model, and match it against the dog model, to see whether the new animal looks more like the elephants or more like the dogs we had seen in the training set. We call these generative learning algorithm.

转载于:https://www.cnblogs.com/jxr041100/p/8364676.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值