【20181103T1】地球发动机【dp优化】

DP算法解决最大功率问题
本文探讨了一种使用动态规划(DP)算法解决特定问题的方法,即求解在一定条件下选择机器以达到最大总功率的问题。通过定义状态转移方程,并采用树状数组或二分查找优化计算过程,实现了高效求解。

题面

一眼dp

\(f_i\)表示前\(i\)个且\(i\)必须选的最大功率

\(f _i= max_{1 \leq j < i,A_i - A_j > X_j} \{f_j \}+p_i\)

下面的条件

\(A_i - A_j > X_j\)

相当于

\(X_j + A_j < A_i\)

\(X_j + A_j +1 \leq A_i\)

\(g(i)= X_i +A_i +1\)

发现对于一个\(i\)来说\(g(i)\)是确定的

那我们可以用一个数据结构来维护

考场上用的树状数组,需要先预处理出\(g(i)\)然后离散化

复杂度\(O(NlogN)\)

和暴力\(N^2\)对了30min竟然没问题

造了个大数据发现输出INF……检查发现树状数组查询的返回值没开long long,好险啊

实际上不需要数据结构,只需要对于每台机器二分一下影响不到的最后的位置,然后倒着DP就可以了

代码

转载于:https://www.cnblogs.com/lstoi/p/9900528.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值