Lunar New Year and a Wander

探讨在Lunar New Year期间,如何在公园的连通图中寻找一条路径,使得访问所有节点的序列字典序最小。文章介绍了一个算法,用于解决这个问题,并通过示例展示了其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Lunar New Year and a Wander
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Lunar New Year is approaching, and Bob decides to take a wander in a nearby park.

The park can be represented as a connected graph with n nodes and m bidirectional edges. Initially Bob is at the node 1 and he records 1 on his notebook. He can wander from one node to another through those bidirectional edges. Whenever he visits a node not recorded on his notebook, he records it. After he visits all nodes at least once, he stops wandering, thus finally a permutation of nodes a1,a2,,an is recorded.

Wandering is a boring thing, but solving problems is fascinating. Bob wants to know the lexicographically smallest sequence of nodes he can record while wandering. Bob thinks this problem is trivial, and he wants you to solve it.

A sequence x is lexicographically smaller than a sequence y if and only if one of the following holds:

  • x is a prefix of y, but xy (this is impossible in this problem as all considered sequences have the same length);
  • in the first position where x and y differ, the sequence x has a smaller element than the corresponding element in y.
Input

The first line contains two positive integers n and m (1n,m105), denoting the number of nodes and edges, respectively.

The following m lines describe the bidirectional edges in the graph. The i-th of these lines contains two integers ui and vi (1ui,vin), representing the nodes the i-th edge connects.

Note that the graph can have multiple edges connecting the same two nodes and self-loops. It is guaranteed that the graph is connected.

Output

Output a line containing the lexicographically smallest sequence a1,a2,,an Bob can record.

Examples
input
Copy
3 2
1 2
1 3
output
Copy
1 2 3 
input
Copy
5 5
1 4
3 4
5 4
3 2
1 5
output
Copy
1 4 3 2 5 
input
Copy
10 10
1 4
6 8
2 5
3 7
9 4
5 6
3 4
8 10
8 9
1 10
output
Copy
1 4 3 7 9 8 6 5 2 10 
Note

In the first sample, Bob's optimal wandering path could be 1213. Therefore, Bob will obtain the sequence {1,2,3}, which is the lexicographically smallest one.

In the second sample, Bob's optimal wandering path could be 14323415. Therefore, Bob will obtain the sequence {1,4,3,2,5}, which is the lexicographically smallest one.

 

 

#include<bits/stdc++.h>
#define REP(i, a, b) for(int i = (a); i <= (b); ++ i)
#define REP(j, a, b) for(int j = (a); j <= (b); ++ j)
#define PER(i, a, b) for(int i = (a); i >= (b); -- i)
using namespace std;
const int maxn=2e5+5;
template <class T>
inline void rd(T &ret){
    char c;
    ret = 0;
    while ((c = getchar()) < '0' || c > '9');
    while (c >= '0' && c <= '9'){
        ret = ret * 10 + (c - '0'), c = getchar();
    }
}
priority_queue<int,vector<int>,greater<int> >q;
vector<int>ans;
bool vis[maxn];
int head[maxn],n,m,tot;
struct node{
    int to,nx;
}p[maxn];
void addedge(int s,int t){
     p[++tot].to=t,p[tot].nx=head[s],head[s]=tot;
}
int main()
{
    rd(n),rd(m);
    REP(i,1,m){
        int u,v;
        rd(u),rd(v);
        addedge(u,v),addedge(v,u);
    }
    q.push(1);
    while(!q.empty()){
         int cur=q.top();
         q.pop();
         if(vis[cur])continue;
         vis[cur]=true;
         ans.push_back(cur);
         for(int i=head[cur];i;i=p[i].nx){
              int to=p[i].to;
              if(vis[to])continue;
             // vis[to]=1;
              q.push(to);
         }
    }
    for(int i=0;i<ans.size();i++)cout<<ans[i]<<' ';
    return 0;
}

 

转载于:https://www.cnblogs.com/czy-power/p/10474488.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值