2017 Multi-University Training Contest - Team 2

本文介绍了一个关于二维平面上寻找由给定点构成的不同正多边形数量的问题。通过输入一系列整数坐标点,利用算法计算并输出可能形成的正多边形数目。示例中特别提到正方形是最常见的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Regular polygon

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 177    Accepted Submission(s): 74


Problem Description
On a two-dimensional plane, give you n integer points. Your task is to figure out how many different regular polygon these points can make.
 

 

Input
The input file consists of several test cases. Each case the first line is a numbers N (N <= 500). The next N lines ,each line contain two number Xi and Yi(-100 <= xi,yi <= 100), means the points’ position.(the data assures no two points share the same position.)
 

 

Output
For each case, output a number means how many different regular polygon these points can make.
 

 

Sample Input
4 0 0 0 1 1 0 1 1 6 0 0 0 1 1 0 1 1 2 0 2 1
 

 

Sample Output
1 2
 

 

Source
 

 

最弱的一题,不过这个正多边形必然是正方形有点骚,不好想啊
#include <bits/stdc++.h>
using namespace std;
int main() {
    int x[505],y[505];
    int n;
    while(cin>>n) {
        set<pair<int,int> >S;
        for(int i=0; i<n; i++) {
            cin>>x[i]>>y[i];
            S.insert(make_pair(x[i],y[i]));
        }
        int cnt=0;
        for(int i=0; i<n; i++)
            for(int j=0; j<i; j++) {
                int mx=x[i]+x[j],dx=max(x[i],x[j])-min(x[i],x[j]);
                int my=y[i]+y[j],dy=max(y[i],y[j])-min(y[i],y[j]);
                if ((mx+dy)&1||(my+dx)&1) continue;
                int sg=((x[i]-x[j])*(y[i]-y[j])<0)?1:-1;
                if (S.count(make_pair((mx+dy)/2,(my+sg*dx)/2))&&S.count(make_pair((mx-dy)/2,(my-sg*dx)/2)))
                    cnt++;

            }
        cout<<cnt/2<<endl;
    }
    return 0;
}

 

 

转载于:https://www.cnblogs.com/BobHuang/p/7246539.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值