2017-2018-1 20155222 《信息安全系统设计基础》第5周学习总结
教材学习内容总结
学习目标
理解逆向的概念
掌握X86汇编基础,能够阅读(反)汇编代码
了解ISA(指令集体系结构)
理解函数调用栈帧的概念,并能用GDB进行调试
1.通用数据传送指令
MOV 传送字或字节.
MOVSX 先符号扩展,再传送.
MOVZX 先零扩展,再传送.
PUSH 把字压入堆栈.
POP 把字弹出堆栈.
PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈.
POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈.
PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈.
POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈.
BSWAP 交换32位寄存器里字节的顺序
XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数)
CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX )
XADD 先交换再累加.( 结果在第一个操作数里 )
XLAT 字节查表转换.
── BX 指向一张 256 字节的表的起点, AL 为表的索引值 (0-255,即
0-FFH); 返回 AL 为查表结果. ( [BX+AL]->AL )2.输入输出端口传送指令
IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} )
OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器 )
输入输出端口由立即方式指定时, 其范围是 0-255; 由寄存器 DX 指定时,
其范围是 0-65535.3.目的地址传送指令.
LEA 装入有效地址.
例: LEA DX,string ;把偏移地址存到DX.
LDS 传送目标指针,把指针内容装入DS.
例: LDS SI,string ;把段地址:偏移地址存到DS:SI.
LES 传送目标指针,把指针内容装入ES.
例: LES DI,string ;把段地址:偏移地址存到ES:DI.
LFS 传送目标指针,把指针内容装入FS.
例: LFS DI,string ;把段地址:偏移地址存到FS:DI.
LGS 传送目标指针,把指针内容装入GS.
例: LGS DI,string ;把段地址:偏移地址存到GS:DI.
LSS 传送目标指针,把指针内容装入SS.
例: LSS DI,string ;把段地址:偏移地址存到SS:DI.4.标志传送指令.
LAHF标志寄存器传送,把标志装入AH.
SAHF 标志寄存器传送,把AH内容装入标志寄存器.
PUSHF 标志入栈.
POPF 标志出栈.
PUSHD 32位标志入栈.
POPD 32位标志出栈.
ADD 加法.
ADC 带进位加法.
INC 加 1.
AAA 加法的ASCII码调整.
DAA 加法的十进制调整.
SUB 减法.
SBB 带借位减法.
DEC 减 1.
NEG 取补
CMP 比较.(两操作数作减法,仅修改标志位,不回送结果).
AAS 减法的ASCII码调整.
DAS 减法的十进制调整.
MUL 无符号乘法.
IMUL 整数乘法.
以上两条,结果回送AH和AL(字节运算),或DX和AX(字运算),
AAM 乘法的ASCII码调整.
DIV 无符号除法.
IDIV 整数除法.
以上两条,结果回送:
商回送AL,余数回送AH, (字节运算);
或 商回送AX,余数回送DX, (字运算).
AAD 除法的ASCII码调整.
CBW 字节转换为字. (把AL中字节的符号扩展到AH中去)
CWD 字转换为双字. (把AX中的字的符号扩展到DX中去)
CWDE 字转换为双字. (把AX中的字符号扩展到EAX中去)
CDQ 双字扩展. (把EAX中的字的符号扩展到EDX中去)
AND 与运算.
or 或运算.
XOR 异或运算.
NOT 取反.
TEST 测试.(两操作数作与运算,仅修改标志位,不回送结果).
SHL 逻辑左移.
SAL 算术左移.(=SHL)
SHR 逻辑右移.( 每位右移, 低位进 CF, 高位补 0)
SAR 算术右移.(每位右移, 低位进 CF, 高位不变)
ROL 循环左移.
ROR 循环右移.
RCL 通过进位的循环左移.
RCR 通过进位的循环右移.
以上八种移位指令,其移位次数可达255次.
移位一次时, 可直接用操作码. 如 SHL AX,1.
移位>1次时, 则由寄存器CL给出移位次数.
如 MOV CL,04
SHL AX,CL逆向
逆向工程(又称逆向技术),是一种产品设计技术再现过程,即对一项目标产品进行逆向分析及研究,从而演绎并得出该产品的处理流程、组织结构、功能特性及技术规格等设计要素,以制作出功能相近,但又不完全一样的产品。逆向工程源于商业及军事领域中的硬件分析。其主要目的是在不能轻易获得必要的生产信息的情况下,直接从成品分析,推导出产品的设计原理。- 函数栈帧
在子函数调用时,执行的操作有:父函数将调用参数从后向前压栈 -> 将返回地址压栈保存 -> 跳转到子函数起始地址执行 -> 子函数将父函数栈帧起始地址(%rpb) 压栈 -> 将 %rbp 的值设置为当前 %rsp 的值,即将 %rbp 指向子函数栈帧的起始地址。
上述过程中,保存返回地址和跳转到子函数处执行由 call 一条指令完成,在call 指令执行完成时,已经进入了子程序中,因而将上一栈帧%rbp 压栈的操作,需要由子程序来完成。函数调用时在汇编层面的指令序列如下:
... # 参数压栈
call FUNC # 将返回地址压栈,并跳转到子函数 FUNC 处执行
... # 函数调用的返回位置
FUNC: # 子函数入口
pushq %rbp # 保存旧的帧指针,相当于创建新的栈帧
movq %rsp, %rbp # 让 %rbp 指向新栈帧的起始位置
subq $N, %rsp # 在新栈帧中预留一些空位,供子程序使用,用 (%rsp+K) 或 (%rbp-K) 的形式引用空位
- 保存返回地址和保存上一栈帧的%rbp 都是为了函数返回时,恢复父函数的栈帧结构。在使用高级语言进行函数调用时,由编译器自动完成上述整个流程。对于”Caller Save” 和 “Callee Save” 寄存器的保存和恢复,也都是由编译器自动完成的。
需要注意的是,父函数中进行参数压栈时,顺序是从后向前进行的。但是,这一行为并不是固定的,是依赖于编译器的具体实现的,在gcc 中,使用的是从后向前的压栈方式,这种方式便于支持类似于 printf(“%d, %d”, i, j) 这样的使用变长参数的函数调用。
教材学习中的问题和解决过程
- 问题1:ISA有什么作用?
- 问题1解决方案:ISA在编译器编写者(CPU软件)和处理器设计人员(CPU硬件)之间提供了一个抽象层
代码调试中的问题和解决过程
- 问题1:无法调用命令行参数
- 问题1解决方案:argv[0]指向输入的程序路径及名称。
argv[1]指向参数para_1字符串。
[代码托管]
学习进度条
代码行数(新增/累积) | 博客量(新增/累积) | 学习时间(新增/累积) | 重要成长 | |
---|---|---|---|---|
目标 | 5000行 | 30篇 | 400小时 | |
第一周 | 6/6 | 1/1 | 20/20 | |
第二周 | 117/123 | 1/2 | 5/25 | |
第三周 | 83/206 | 2/3 | 5/30 |
尝试一下记录「计划学习时间」和「实际学习时间」,到期末看看能不能改进自己的计划能力。这个工作学习中很重要,也很有用。
耗时估计的公式
:Y=X+X/N ,Y=X-X/N,训练次数多了,X、Y就接近了。
计划学习时间:XX小时
实际学习时间:XX小时
改进情况:
(有空多看看现代软件工程 课件
软件工程师能力自我评价表)