HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)

Greatest Common Increasing Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3460    Accepted Submission(s): 1092


Problem Description
This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
 

 

Input
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
 

 

Output
output print L - the length of the greatest common increasing subsequence of both sequences.
 

 

Sample Input
1 5 1 4 2 5 -12 4 -12 1 2 4
 

 

Sample Output
2
 

 

Source
 
 
代码:动态规划求最长增长公共序列 下面展示的是压缩空间的lcs,由于不需要记录顺序,所以这样写,较为简便,如果要记录路径只需要将lcs[]--->换成lcs[][],
然后maxc,变为lcs[][]的上一行即可!
 1 //增长lcs algorithm
 2 #include<stdio.h>
 3 #include<string.h>
 4 #define maxn 505
 5 int aa[maxn],bb[maxn];
 6 int lcs[maxn];
 7 int main()
 8 {
 9     int test,na,nb,i,j,maxc,res;
10     scanf("%d",&test);
11     while(test--)
12     {
13         scanf("%d",&na);
14         for(i=1;i<=na;i++)
15            scanf("%d",aa+i);
16            scanf("%d",&nb);
17         for(j=1;j<=nb;j++)
18            scanf("%d",bb+j);
19         memset(lcs,0,sizeof(lcs));
20         for(i=1;i<=na;i++)
21         {
22             maxc=0;
23           for(j=1;j<=nb;j++)
24           {
25               if(aa[i]==bb[j]&&lcs[j]<maxc+1)
26                   lcs[j]=maxc+1;
27               if(aa[i]>bb[j]&&maxc<lcs[j])
28                   maxc=lcs[j];
29           }
30         }
31         res=0;
32         for(i=1;i<=nb;i++)
33            if(res<lcs[i])res=lcs[i];
34            printf("%d\n",res);
35            if(test) putchar(10);
36     }
37     return 0;
38 }

 

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值