转化一下,$\sum\limits_{i=1}^n[i,n]=n\sum\limits_{i=1}^n\dfrac i{(i,n)}$
枚举$d=(i,n)$,上式变为$n\sum\limits_{d=1}^n\sum\limits_{i=1}^n[(i,n)=d]\dfrac id=n\sum\limits_{d|n}\sum\limits_{i=1}^{\frac nd}\left[\left(i,\dfrac nd\right)=1\right]i$
设$f(n)=\sum\limits_{i=1}^n[(i,n)=1]i$,即互质数和
$$\begin{align*}f(n)&=\sum\limits_{i=1}^ni\sum\limits_{d|(i,n)}\mu(d)\\&=\sum\limits_{d|n}\mu(d)\sum\limits_{\substack{d|i\\i\leq n}}i\\&=\sum\limits_{d|n}d\mu(d)\sum\limits_{i=1}^{\frac nd}i\\&=\dfrac n2\sum\limits_{d|n}\mu(d)\left(\dfrac nd+1\right)\\&=\dfrac n2\left([n=1]+\sum\limits_{d|n}\mu(d)\dfrac nd\right)\\&=\dfrac n2\left([n=1]+\varphi(n)\right)\end{align*}$$
最后一步转变的依据可以用$n=\sum\limits_{d|n}\varphi(d)$反演得到
于是我们可以$O(1)$算$f(n)$了,原式变成$n\sum\limits_{d|n}f\left(\dfrac nd\right)=n\sum\limits_{d|n}f(d)$,$O(\sqrt n)$枚举约数就好了
#include<stdio.h>
#define ll long long
#define T 1000000
int phi[1000010],pr[1000010];
bool np[1000010];
void sieve(){
int i,j,m=0;
np[1]=1;
phi[1]=1;
for(i=2;i<=T;i++){
if(!np[i]){
m++;
pr[m]=i;
phi[i]=i-1;
}
for(j=1;j<=m;j++){
if(pr[j]*(ll)i>T)break;
np[i*pr[j]]=1;
if(i%pr[j]==0){
phi[i*pr[j]]=phi[i]*pr[j];
break;
}else
phi[i*pr[j]]=phi[i]*(pr[j]-1);
}
}
}
ll f(int n){return(phi[n]+(n==1))*(ll)n/2;}
int main(){
sieve();
int t,i,n;
ll s;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
s=0;
for(i=1;i*i<=n;i++){
if(n%i==0){
s+=f(n/i);
if(i*i<n)s+=f(i);
}
}
printf("%lld\n",n*s);
}
}