Heap

本文深入探讨了堆数据结构及其在完全二叉树中的实现,包括堆排序算法的具体步骤与时间复杂度分析。通过递归与循环方式实现堆排序,并解析堆的构建与调整过程。

heap definition

  • completely balanced binary tree.
  • the value of each node >= each of the node's children.

heap data structure

completely balanced binary tree implemented by an array

  • the root is stored in A[1]
  • the parent of A[i] is A[floor(i/2)]
  • the left child of A[i] is A[2*i]
  • the right child of A[i] is A[2*i +1]
  • the node in the far right of the bottom level is stored in A[n]
  • if 2*i +1 >n, then the node does not have a right child

 

heapify

def heapify(r):
"""pre-cond: the balanced binary tree rooted at A[r] is such that its left and right subtrees are heaps."""
"""post-cond:its values are rearranged in place to make it complete heap.
"""running time: the height of the tree"""

    i=r;
    while(true):
    """loop-invariant: the entire tree rooted at A[r] is a heap except that node i might not greater or equal to both of its children. As well, the value of i's parent is at least the value of i and i's children."""

   if(i is leaf): EXIT;
   elseif(left(i) ==max(A[i],A[leftchild[i]],A[rightchild[i]]):
       swap(A[i],A[leftchild[i]]);
       i=leftchild[i];
   elseif(right(i) ==max(A[i],A[leftchild[i]],A[rightchild[i]]):
       swap(A[i],A[rightchild[i]]);
       i=rightchild[i];
   else(A[i] ==max(A[i],A[leftchild[i]],A[rightchild[i]]):
       EXIT;

OR


pre-cond: left and right child are heapified

post-cond: the whole tree is heapified

algorithm:

heapify(r){

if(r is leaf): exit;

//

if(max(r,left,right)==r): exit;

else if(max(r,left,right)==left): swap(r,left); heapify(left);

else:swap(r,right):heapify(right);

}

T(n)=T(n/2)+O(1)=T(n/4)+2O(1)=T(n/8)+3O(1)=T(1)+lognO(1)=O(logn)

 

make heap


  • recursive way

    get help from friends:

    T(n)=2T(n/2)+logn=4(2T(n/4)+log(n/2))+logn=O(n)

  • loop

    from k=n/2,n/2-1,n/2-2,...2,1

      heapify(k)

          Time: induction as

          the number of subtrees of height i is 2logn-i

          because each such tree has its root as level(logn-i) in the tree.

          each take O(i) to heapify.

          T(n) = Σlogni=1 (2logn-i)i

          The sum is geometric.

          T(n)=O(n)

selection sort==> heap sort

largest i values are sorted on side.

remaining values are off to side.

max is easier to find if a heap.

largest i values are sorted on side and remaining values are in a heap.

heap-sort loop invariant:

the n-i largest elements have been removed and are sorted in A[i+1,n] and the remaining i elements form a heap in A[1,i].

running time:

make heap takes O(n) time.

heapifing a tree of size i takes log(i);

T(n) = O(n) + Σ1i=n logi

the sum is arithmetic. 

T(n) = n * maximum value = O(nlogn).

转载于:https://www.cnblogs.com/grep/archive/2012/02/25/2367603.html

标题基于Python的自主学习系统后端设计与实现AI更换标题第1章引言介绍自主学习系统的研究背景、意义、现状以及本文的研究方法和创新点。1.1研究背景与意义阐述自主学习系统在教育技术领域的重要性和应用价值。1.2国内外研究现状分析国内外在自主学习系统后端技术方面的研究进展。1.3研究方法与创新点概述本文采用Python技术栈的设计方法和系统创新点。第2章相关理论与技术总结自主学习系统后端开发的相关理论和技术基础。2.1自主学习系统理论阐述自主学习系统的定义、特征和理论基础。2.2Python后端技术栈介绍DjangoFlask等Python后端框架及其适用场景。2.3数据库技术讨论关系型和非关系型数据库在系统中的应用方案。第3章系统设计与实现详细介绍自主学习系统后端的设计方案和实现过程。3.1系统架构设计提出基于微服务的系统架构设计方案。3.2核心模块设计详细说明用户管理、学习资源管理、进度跟踪等核心模块设计。3.3关键技术实现阐述个性化推荐算法、学习行为分析等关键技术的实现。第4章系统测试与评估对系统进行功能测试和性能评估。4.1测试环境与方法介绍测试环境配置和采用的测试方法。4.2功能测试结果展示各功能模块的测试结果和问题修复情况。4.3性能评估分析分析系统在高并发等场景下的性能表现。第5章结论与展望总结研究成果并提出未来改进方向。5.1研究结论概括系统设计的主要成果和技术创新。5.2未来展望指出系统局限性并提出后续优化方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值