BZOJ 2707: [SDOI2012]走迷宫 [高斯消元 scc缩点]

本文解析了SDOI2012竞赛题目“走迷宫”的算法解决方案,介绍了如何通过求强连通分量(SCC)、高斯消元法及动态规划(DP)来计算从起点到终点的期望步数。适用于规模较大但强连通分量较少的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2707: [SDOI2012]走迷宫

题意:求s走到t期望步数,\(n \le 10^4\),保证\(|SCC| \le 100\)


求scc缩点,每个scc高斯消元,scc之间直接DP

注意每次清空系数矩阵

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e4+5, M=1e6+5;
const double eps=1e-8;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}

int n, m, s, t, de[N], u, v;
struct edge{int v, ne;} e[M];
int cnt=1, h[N];
inline void ins(int u, int v) {e[++cnt]=(edge){v, h[u]}; h[u]=cnt;}
int dfn[N], low[N], dfc, belong[N], scc;
struct List{
    int a[105], n;
    int& operator [](int x) {return a[x];}
    inline void push(int x) {a[++n]=x;}
}li[N];
int st[N], top;
void dfs(int u) { //printf("dfs %d\n",u);
    dfn[u] = low[u] = ++dfc;
    st[++top] = u;
    for(int i=h[u];i;i=e[i].ne) {
        int v=e[i].v;
        if(!dfn[v]) dfs(v), low[u] = min(low[u], low[v]);
        else if(!belong[v]) low[u] = min(low[u], dfn[v]);
    }
    if(dfn[u] == low[u]) {
        scc++;
        while(true) {
            int x=st[top--];
            belong[x] = scc;
            li[scc].push(x);
            if(x == u) break;
        }
    }
}

double a[105][105], f[N]; int id[N];
void gauss(int n) { 
    //puts("\ngauss");
    //for(int i=1; i<=n; i++)
    //  for(int j=1; j<=n+1; j++) printf("%lf%c",a[i][j], j==n+1 ? '\n' : ' ');

    for(int i=1; i<=n; i++) {
        int r=i;
        for(int j=i; j<=n; j++) if(abs(a[j][i])>abs(a[r][i])) r=j;
        if(r!=i) for(int j=1; j<=n+1; j++) swap(a[r][j], a[i][j]);

        for(int k=i+1; k<=n; k++) if(abs(a[k][i]) > eps){
            double t = a[k][i]/a[i][i];
            for(int j=i; j<=n+1; j++) a[k][j] -= t*a[i][j];
        }
    }
    for(int i=n; i>=1; i--) {
        for(int j=n; j>i; j--) a[i][n+1] -= a[i][j]*a[j][n+1];
        a[i][n+1] /= a[i][i];
    }
}
void solve(List &q) {
    memset(a,0,sizeof(a));
    int n=0;
    for(int i=1; i<=q.n; i++) id[q[i]] = ++n;// printf("%d ",q[i]); puts(" q");
    for(int i=1; i<=q.n; i++) {
        int u=q[i]; 
        a[i][i]=1; a[i][n+1]=1;
        if(u==t) {a[i][n+1]=0; continue;}
        for(int p=h[u];p;p=e[p].ne) {
            int v=e[p].v; 
            if(belong[v] != belong[u]) a[i][n+1] += f[v]/de[u];
            else a[i][id[v]] -= 1.0/de[u];
        }
    }
    gauss(n);
    for(int i=1; i<=q.n; i++) f[q[i]] = a[i][n+1];// printf("getf %d %lf\n",q[i],f[q[i]]);
}
namespace SCC {
    struct edge{int v, ne;} e[M];
    int cnt=1, h[N];
    inline void ins(int u, int v) {e[++cnt]=(edge){v, h[u]}; h[u]=cnt;}

    int vis[N];
    void dfs(int u) {
        if(vis[u]) return; vis[u]=1;
        for(int i=h[u];i;i=e[i].ne) dfs(e[i].v);
        //printf("solveSCC %d\n",u);
        solve(li[u]);
    }
}
void build() {
    for(int u=1; u<=n; u++)
        for(int i=h[u];i;i=e[i].ne)
            if(belong[u] != belong[e[i].v]) SCC::ins(belong[u], belong[e[i].v]);
}
int main() {
    freopen("in","r",stdin);
    n=read(); m=read(); s=read(); t=read();
    for(int i=1; i<=m; i++) {
        u=read(), v=read();
        de[u]++; ins(u, v);
    }
    dfs(s);
    //for(int i=1; i<=n; i++) printf("scc %d  %d %d\n",i, dfn[i], belong[i]);
    if(!dfn[t]) {puts("INF"); return 0;}
    for(int i=1; i<=n; i++) if(i!=t && de[i]==0 && dfn[i]) {puts("INF"); return 0;}

    build();
    SCC::dfs(belong[s]);
    //for(int i=1; i<=n; i++) printf("f %d %lf\n",i,f[i]);
    printf("%.3lf", f[s]);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值