hdu 1098 Ignatius's puzz

数论问题求解与编程实现
本博客探讨了一个数论问题,通过分析数学公式,找出特定条件下满足条件的整数值。具体而言,讨论了方程 f(x) = 5*x^13 + 13*x^5 + k*a*x 的求解过程,其中 x 是任意整数,k 是给定的负整数。通过编程实现,寻找使得任意 x 的情况下,f(x) 能被 65 整除的 a 值。文章详细介绍了解题思路和代码实现。

有关数论方面的题要仔细阅读,分析公式。

Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print "no".

 


Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
 


Output
The output contains a string "no",if you can't find a,or you should output a line contains the a.More details in the Sample Output.
 


Sample Input
11 100 9999
 
 
 
Sample Output
22 no 43
 

 

Author
eddy
 
 
 

题目大意:方程f(x)=5*x^13+13*x^5+k*a*x;输入任意一个数k,是否存在一个数a,对任意x都能使得f(x)能被65整出;输入a;

解题报告:假设存在这个数a ,因为对于任意x方程都成立,所以,当x=1时f(x)=18+ka;有因为f(x)能被65整出,这可得出f(x)=n*65;

即:18+ka=n*65;若该方程有整数解则说明假设成立。

所以,只要找到a,使得18+k*a能被65整除,也就解决了这个题目.

 

 

 1 #include<iostream>
 2 using namespace std;
 3 int main()
 4 {
 5     int k,i;
 6     while(scanf("%d",&k)!=EOF)
 7     {
 8         for(i=1;i<=10000;i++)
 9         {
10             if((18+k*i)%65==0){printf("%d\n",i);break;}
11         }
12         if(i>10000)printf("no\n");
13     }
14     return 0;
15 }
 

 

转载于:https://www.cnblogs.com/wangmengmeng/p/4710896.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值