先验概率、后验概率、似然估计、条件概率

本文解释了先验概率、后验概率、似然估计等概念,并通过天气实例介绍了贝叶斯公式及其应用,帮助读者更好地理解这些概念在机器学习中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上周分享会,小伙伴提到了“极大似然估计”,发现隔了一年多,竟然对这些基本的机器学习知识毫无准确的概念了。

 

先验分布:根据一般的经验认为随机变量应该满足的分布,eg:根据往年的气候经验(经验),推测下雨(结果)的概率即为先验概率;
后验分布:通过当前训练数据修正的随机变量的分布,比先验分布更符合当前数据,eg: 有乌云(原因、观测数据)的时候下雨(结果)的概率即为后验概率
似然估计:已知训练数据,给定了模型,通过让似然性极大化估计模型参数的一种方法,eg: 下雨(结果)的时候有乌云(观测数据、原因等)的概率即为似然概率
后验分布往往是基于先验分布和极大似然估计计算出来的。

贝叶斯公式(后验概率公式、逆概率公式):

Θ:决定数据分布的参数(原因)

x: 观察得到的数据(结果)

p(x):  证据因子evidence

p(Θ): 先验概率

p(Θ|x): 后验概率

p(x|Θ): 似然概率

后验概率=似然函数×先验概率/证据因子,证据因子(Evidence,也被称为归一化常数)可仅看成一个权值因子,以保证各类别的后验概率总和为1从而满足概率条件。

备注:

联合概率:P(AB)=P(A)P(B|A)=P(B)P(A|B)

条件概率:P(A|B)=P(AB)|P(B)

贝叶斯公式:P(B|A)=P(A|B)P(B)/P(A)

 

转载于:https://www.cnblogs.com/yiruparadise/p/7918823.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值