Apache Beam的目标

ApacheBeam旨在提供一种统一、可移植且可扩展的编程模型,适用于批处理和流处理。该模型支持主流计算平台,如ApacheFlink和ApacheSpark,并允许在不同执行环境中无缝迁移数据处理Pipeline。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Apache Beam的目标

  • 统一(UNIFIED)

  基于单一的编程模型,能够实现批处理(Batch processing)、流处理(Streaming Processing),通常的做法是把待处理的数据集(Dataset)统一,一般会把有界(Bound)数据集作为无界(Unbound)数据集的一种特殊情况来看待,比如Apache Flink便是按照这种方式处理,在差异化的API层之上构建一个统一的API层。

 

  • 可移植(PORTABLE)

  在多个不同的计算环境下,都能够执行已经定义好的数据处理Pipeline。也就是说,对数据集处理的定义(即构建的Data Pipeline),与最终所要Deploy的执行环境完全无关。这对实现数据处理的企业是非常友好的,当下数据处理新技术不断涌现,企业数据处理平台也为了能够与时俱进并提高处理效率,当然希望在底层计算平台升级的过程中无需重写上层已定义的Data Pipeline。
目前,Apache Beam项目开发整体来看还处在初期,初步决定底层执行环境支持主流的计算平台:Apache Apex、Apache Flink、Apache Spark、Google Cloud Dataflow。实际上,Apache Beam的这种统一编程模型,可以支持任意的计算引擎,通过Data Pipeline层与执行引擎层之间开发一个类似Driver的连接器即可实现。

 

  • 可扩展(EXTENSIBLE)

  实现任意可以共享的Beam SDK、IO connector、Transform库。


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/7609602.html,如需转载请自行联系原作者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值