ZOJ 1985 Largest Rectangle in a Histogram(动态规划+路径压缩)

本文介绍了一种解决直方图中寻找最大矩形面积问题的方法,通过动态规划算法,利用路径压缩优化来提高效率。
Largest Rectangle in a Histogram

Time Limit: 2 Seconds      Memory Limit: 65536 KB

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.


Input

The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.


Output

For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.


Sample Input

7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0


Sample Output

8
4000

 

动态规划  如果不使用路径压缩的话就会超时

View Code
 1 # include<stdio.h>
 2 # define maxn 100010
 3 int main()
 4 {
 5     int n,i,j,left[maxn],right[maxn];
 6     long long int a[maxn];
 7     long long int ans,max;
 8     while(scanf("%d",&n) && n)
 9     {
10         for(i=1; i<=n; i++)
11         {
12             scanf("%lld",&a[i]);
13             left[i] = right[i] = i;
14         }
15         max=0;
16         a[0] = a[n+1] =-1;
17         for(i=2; i<=n; i++)
18         {
19             j = i;
20             while(a[i]<= a[left[j]-1])
21                 j = left[j]-1;
22             left[i] = left[j];
23         }
24         for(i=n-1; i>=1; i--)
25         {
26             j=i;
27             while(a[i]<=a[right[j]+1])
28                 j=right[j]+1;
29                 right[i]=right[j];
30         }
31         for(i=1; i<=n; i++)
32         {
33             ans = (right[i] - left[i] + 1) *a[i];
34             if(ans>max)
35                 max=ans;
36         }
37         printf("%lld\n",max);
38     }
39     return 0;
40 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值