ZOJ Problem Set - 3329(概率DP)

一人游戏期望次数解析
本文介绍了一种简单有趣的一人游戏,并详细解析了计算在游戏结束前掷骰子次数期望值的方法。玩家使用三个不同面数的骰子,根据特定规则更新计数器数值,直至达到或超过设定阈值n,最终通过代换系数化简求解。
One Person Game

Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge

There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:

  1. Set the counter to 0 at first.
  2. Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
  3. If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.

Calculate the expectation of the number of times that you cast dice before the end of the game.

Input

There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers n, K1, K2, K3, a, b, c (0 <= n <= 500, 1 < K1, K2, K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).

Output

For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.

Sample Input

2
0 2 2 2 1 1 1
0 6 6 6 1 1 1

Sample Output

1.142857142857143
1.004651162790698


本题通过代换系数,化简后求系数。

一般形成环的用高斯消元法求解。但是此题都是和dp[0]相关。所有可以分离出系数。

dp[i]表示达到i还要掷几次的期望,每一项都和dp[0]有关,且可表示成dp[i]=A[i]*dp[0]+B[0];

所以只要求出dp[0]的系数A,B就可以求出dp[0]=B[0]/(1-A[0]);

dp[n] = dp[0]/k1/k1/k1+1;

然后递推可推出dp[0]的系数;

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #define M(a,b) memset(a,b,sizeof(a))
 5 
 6 using namespace std;
 7 
 8 double A[1005],B[1005];
 9 int n,k1,k2,k3,a,b,c;
10 
11 int main()
12 {
13     int t;
14     scanf("%d",&t);
15     while(t--)
16     {
17         M(A,0);
18         M(B,0);
19         scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
20         A[n] = 1.0/(k1*k2*k3);
21         B[n] = 1;
22         for(int i = n-1;i>=0;i--)
23         {
24             for(int p = 1;p<=k1;p++)
25                 for(int q = 1;q<=k2;q++)
26                    for(int r = 1;r<=k3;r++)
27             {
28                 if(p!=a||q!=b||r!=c)
29                    {
30                        A[i] += A[i+p+q+r]/(k1*k2*k3);
31                        B[i] += B[i+p+q+r]/(k1*k2*k3);
32                    }
33                    //cout<<A[i]<<' '<<B[i]<<endl;
34             }
35             A[i]+=(1.0/(k1*k2*k3));
36             B[i]+=1;
37             //cout<<A[i]<<' '<<B[i]<<endl;
38         }
39         double ans = B[0]/(1-A[0]);
40         printf("%.16f\n",ans);
41     }
42     return 0;
43 }

 

转载于:https://www.cnblogs.com/haohaooo/p/4037884.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值