5. Longest Palindromic Substring

Brutal Force: O(n^2)

public class Solution {
    public String longestPalindrome(String s) {
        String maxPal="";
        for(int i=0;i<s.length();i++)
        {
            String str1=lenofPal(i, i, s);
            if(str1.length()>maxPal.length()) maxPal=str1; String str2=lenofPal(i, i+1, s); if(str2.length()>maxPal.length()) maxPal=str2; } return maxPal; } private String lenofPal(int l, int r, String s) { while(l>=0&&r<s.length()&&s.charAt(l)==s.charAt(r)) { l--; r++; } return s.substring(l+1,r); } }

 

 

Manacher: O(n)

public class Solution {
    public String longestPalindrome(String s) {
        char[] arr=new char[s.length()*2+1];
        for(int i=0;i<arr.length;i++)
        {
            if(i%2==0)
                arr[i]='#';
            else
                arr[i]=s.charAt(i/2);
        }
        
        int[] len=new int[arr.length];
        int po=0;
        int mx=0;
        String ret="";
        for(int i=0;i<arr.length;i++)
        {
            if(mx>i)
                len[i]=Math.min(mx-i, len[2*po-i]);
            else
                len[i]=1;
            while(i-len[i]>=0&&i+len[i]<arr.length&&arr[i-len[i]]==arr[i+len[i]])
                len[i]++;
            if(i+len[i]>mx)
            {
                mx=i+len[i];
                po=i;
            }
            if(len[i]-1>ret.length())
                ret=s.substring((i-len[i]+1)/2,(i+len[i]-1)/2);
        }
        return ret;
    }
}

 

转载于:https://www.cnblogs.com/asuran/p/7568701.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值