POJ 2151, Check the difficulty of problems

本文介绍了一个编程竞赛成绩的概率计算问题,包括如何计算所有队伍至少解决一个问题的概率,以及冠军队伍至少解决一定数量问题的概率。通过使用动态规划和概率论,文章提供了一个C++实现的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Time Limit: 2000MS  Memory Limit: 65536K
Total Submissions: 1015  Accepted: 391


Description
Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.

Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.

Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?

 

Input
The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

 

Output
For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

 

Sample Input
2 2 2
0.9 0.9
1 0.9
0 0 0

 

Sample Output
0.972

 

Source
POJ Monthly,鲁小石


// POJ2151.cpp : Defines the entry point for the console application.
//

#include 
<iostream>
#include 
<iomanip>
using namespace std;

int main(int argc, char* argv[])
{
    
int N,M,T;
    
double TM[1001][31];

    
double DP[31][31];
    
while (cin >> M >> T >> N && M != 0 && T != 0 && N != 0)
    {
        memset(TM, 
0sizeof(TM));
        
for (int i = 0; i < T; ++i)
            
for (int j = 0; j < M; ++j)
                scanf(
"%lf"&TM[i][j]);

        
double P1 = 1,P2 = 1;
        
for (int k = 0; k < T; ++k)
        {
            memset(DP, 
0sizeof(DP));
            DP[
0][0= 1;
            
for (int i = 1; i <= M; ++i)
                
for (int j = 0; j <= M; ++j)
                    DP[i][j] 
= (j == 0)? DP[i-1][j] * (1 - TM[k][i - 1]):DP[i-1][j-1* TM[k][i - 1+ DP[i-1][j] * (1 - TM[k][i - 1]);

            P1 
*= (1 - DP[M][0]);

            
double P = 0;
            
for (int i = 1; i < N; ++i) P += DP[M][i];

            P2 
*= P;
        }
        cout 
<< fixed << showpoint << setprecision(3)<< P1 - P2 << endl;
    };
    
return 0;
}

转载于:https://www.cnblogs.com/asuran/archive/2009/10/09/1579394.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值