搞懂分布式技术13:缓存的那些事

本文深入探讨缓存技术的重要性,解析缓存算法如LRU、LFU及FIFO的工作原理,阐述缓存的命中率、最大元素及清空策略等关键特征,对比本地缓存与分布式缓存的优劣,提供编程实现缓存的实例。

搞懂分布式技术13:缓存的那些事

缓存和它的那些淘汰算法们

为什么我们需要缓存?

很久很久以前,在还没有缓存的时候……用户经常是去请求一个对象,而这个对象是从数据库去取,然后,这个对象变得越来越大,这个用户每次的请求时间也越来越长了,这也把数据库弄得很痛苦,他无时不刻不在工作。所以,这个事情就把用户和数据库弄得很生气,接着就有可能发生下面两件事情:

1.用户很烦,在抱怨,甚至不去用这个应用了(这是大多数情况下都会发生的)

2.数据库为打包回家,离开这个应用,然后,就出现了大麻烦(没地方去存储数据了)(发生在极少数情况下)

上帝派来了缓存

在几年之后,IBM(60年代)的研究人员引进了一个新概念,它叫“缓存”。

什么是缓存?

正如开篇所讲,缓存是“存贮数据(使用频繁的数据)的临时地方,因为取原始数据的代价太大了,所以我可以取得快一些。”

缓存可以认为是数据的池,这些数据是从数据库里的真实数据复制出来的,并且为了能正确取回,被标上了标签(键 ID)。太棒了

programmer one 已经知道这点了,但是他还不知道下面的缓存术语。

命中:

当客户发起一个请求(我们说他想要查看一个产品信息),我们的应用接受这个请求,并且如果是在第一次检查缓存的时候,需要去数据库读取产品信息。

如果在缓存中,一个条目通过一个标记被找到了,这个条目就会被使用、我们就叫它缓存命中。所以,命中率也就不难理解了。

Cache Miss:

但是这里需要注意两点:

1. 如果还有缓存的空间,那么,没有命中的对象会被存储到缓存中来。

2. 如果缓存满了,而又没有命中缓存,那么就会按照某一种策略,把缓存中的旧对象踢出,而把新的对象加入缓存池。而这些策略统称为替代策略(缓存算法),这些策略会决定到底应该提出哪些对象。

存储成本:

当没有命中时,我们会从数据库取出数据,然后放入缓存。而把这个数据放入缓存所需要的时间和空间,就是存储成本。

索引成本:

和存储成本相仿。

失效:

当存在缓存中的数据需要更新时,就意味着缓存中的这个数据失效了。

替代策略:

当缓存没有命中时,并且缓存容量已经满了,就需要在缓存中踢出一个老的条目,加入一条新的条目,而到底应该踢出什么条目,就由替代策略决定。

最优替代策略:

最优的替代策略就是想把缓存中最没用的条目给踢出去,但是未来是不能够被预知的,所以这种策略是不可能实现的。但是有很多策略,都是朝着这个目前去努力。

缓存算法

没有人能说清哪种缓存算法优于其他的缓存算法

Least Frequently Used(LFU):

大家好,我是 LFU,我会计算为每个缓存对象计算他们被使用的频率。我会把最不常用的缓存对象踢走。

Least Recently User(LRU):

我是 LRU 缓存算法,我把最近最少使用的缓存对象给踢走。

我总是需要去了解在什么时候,用了哪个缓存对象。如果有人想要了解我为什么总能把最近最少使用的对象踢掉,是非常困难的。

浏览器就是使用了我(LRU)作为缓存算法。新的对象会被放在缓存的顶部,当缓存达到了容量极限,我会把底部的对象踢走,而技巧就是:我会把最新被访问的缓存对象,放到缓存池的顶部。

所以,经常被读取的缓存对象就会一直呆在缓存池中。有两种方法可以实现我,array 或者是 linked list。

我的速度很快,我也可以被数据访问模式适配。我有一个大家庭,他们都可以完善我,甚至做的比我更好(我确实有时会嫉妒,但是没关系)。我家庭的一些成员包括 LRU2 和 2Q,他们就是为了完善 LRU 而存在的。

First in First out(FIFO):

我是先进先出,我是一个低负载的算法,并且对缓存对象的管理要求不高。我通过一个队列去跟踪所有的缓存对象,最近最常用的缓存对象放在后面,而更早的缓存对象放在前面,当缓存容量满时,排在前面的缓存对象会被踢走,然后把新的缓存对象加进去。我很快,但是我并不适用。

Second Chance:

大家好,我是 second chance,我是通过 FIFO 修改而来的,被大家叫做 second chance 缓存算法,我比 FIFO 好的地方是我改善了 FIFO 的成本。我是 FIFO 一样也是在观察队列的前端,但是很FIFO的立刻踢出不同,我会检查即将要被踢出的对象有没有之前被使用过的标志(1一个 bit 表示),没有被使用过,我就把他踢出;否则,我会把这个标志位清除,然后把这个缓存对象当做新增缓存对象加入队列。你可以想象就这就像一个环队列。当我再一次在队头碰到这个对象时,由于他已经没有这个标志位了,所以我立刻就把他踢开了。我在速度上比 FIFO 快。

其他的缓存算法还考虑到了下面几点:

成本:如果缓存对象有不同的成本,应该把那些难以获得的对象保存下来。

容量:如果缓存对象有不同的大小,应该把那些大的缓存对象清除,这样就可以让更多的小缓存对象进来了。

时间:一些缓存还保存着缓存的过期时间。电脑会失效他们,因为他们已经过期了。

根据缓存对象的大小而不管其他的缓存算法可能是有必要的。

 

 

看看缓存元素(缓存实体)

public class CacheElement
{
    private Object objectValue;
    private Object objectKey;
    private int index;
    private int hitCount;//命中次数
    // getters and setters
}

这个缓存实体拥有缓存的key和value,这个实体的数据结构会被以下所有缓存算法用到。

缓存算法的公用代码

 public final synchronized void addElement(Object key, Object value)
{
    int index;
    Object obj;
    // get the entry from the table
    obj = table.get(key);
    // If we have the entry already in our table
    // then get it and replace only its value.
    obj = table.get(key);

    if (obj != null)
    {
        CacheElement element;
        element = (CacheElement) obj;
        element.setObjectValue(value);
        element.setObjectKey(key);
        return;
    }

上面的代码会被所有的缓存算法实现用到。这段代码是用来检查缓存元素是否在缓存中了,如果是,我们就替换它,但是如果我们找不到这个 key 对应的缓存,我们会怎么做呢?那我们就来深入的看看会发生什么吧!

现场访问

今天的专题很特殊,因为我们有特殊的客人,事实上他们是我们想要听的与会者,但是首先,先介绍一下我们的客人:Random Cache,FIFO Cache。让我们从 Random Cache开始。

看看随机缓存的实现

 public final synchronized void addElement(Object key, Object value)
{
    int index;
    Object obj;
    obj = table.get(key);
    if (obj != null)
    {
        CacheElement element;// Just replace the value.
        element = (CacheElement) obj;
        element.setObjectValue(value);
        element.setObjectKey(key);
        return;
    }// If we haven't filled the cache yet, put it at the end.
    if (!isFull())
    {
        index = numEntries;
        ++numEntries;
    }
    else { // Otherwise, replace a random entry.
        index = (int) (cache.length * random.nextFloat());
        table.remove(cache[index].getObjectKey());
    }
    cache[index].setObjectValue(value);
    cache[index].setObjectKey(key);
    table.put(key, cache[index]);
}

看看FIFO缓算法的实现

 public final synchronized void addElement(Objectkey, Object value)
{
    int index;
    Object obj;
    obj = table.get(key);
    if (obj != null)
    {
        CacheElement element; // Just replace the value.
        element = (CacheElement) obj;
        element.setObjectValue(value);
        element.setObjectKey(key);
        return;
    }
    // If we haven't filled the cache yet, put it at the end.
    if (!isFull())
    {
        index = numEntries;
        ++numEntries;
    }
    else { // Otherwise, replace the current pointer,
           // entry with the new one.
        index = current;
        // in order to make Circular FIFO
        if (++current >= cache.length)
            current = 0;
        table.remove(cache[index].getObjectKey());
    }
    cache[index].setObjectValue(value);
    cache[index].setObjectKey(key);
    table.put(key, cache[index]);
}

看看LFU(least frequently used)缓存算法的实现

 public synchronized Object getElement(Object key)
{
    Object obj;
    obj = table.get(key);
    if (obj != null)
    {
        CacheElement element = (CacheElement) obj;
        element.setHitCount(element.getHitCount() + 1);
        return element.getObjectValue();
    }
    return null;
}
public final synchronized void addElement(Object key, Object value)
{
    Object obj;
    obj = table.get(key);
    if (obj != null)
    {
        CacheElement element; // Just replace the value.
        element = (CacheElement) obj;
        element.setObjectValue(value);
        element.setObjectKey(key);
        return;
    }
    if (!isFull())
    {
        index = numEntries;
        ++numEntries;
    }
    else
    {
        CacheElement element = removeLfuElement();
        index = element.getIndex();
        table.remove(element.getObjectKey());
    }
    cache[index].setObjectValue(value);
    cache[index].setObjectKey(key);
    cache[index].setIndex(index);
    table.put(key, cache[index]);
}
public CacheElement removeLfuElement()
{
    CacheElement[] elements = getElementsFromTable();
    CacheElement leastElement = leastHit(elements);
    return leastElement;
}
public static CacheElement leastHit(CacheElement[] elements)
{
    CacheElement lowestElement = null;
    for (int i = 0; i < elements.length; i++)
    {
        CacheElement element = elements[i];
        if (lowestElement == null)
        {
            lowestElement = element;
        }
        else {
            if (element.getHitCount() < lowestElement.getHitCount())
            {
                lowestElement = element;
            }
        }
    }
    return lowestElement;
}

最重点的代码,就应该是 leastHit 这个方法,这段代码就是把hitCount 最低的元素找出来,然后删除,给新进的缓存元素留位置

看看LRU缓存算法实现

 private void moveToFront(int index)
{
    int nextIndex, prevIndex;
    if(head != index)
    {
        //获取当前节点的前一个节点和后一个节点
        nextIndex = next[index];
        prevIndex = prev[index];
        // Only the head has a prev entry that is an invalid index
        // so we don't check.
        //前节点
        next[prevIndex] = nextIndex;
        // Make sure index is valid. If it isn't, we're at the tail
        // and don't set prev[next].
        if(nextIndex >= 0)
            prev[nextIndex] = prevIndex;
        else
            tail = prevIndex;
        //双向链表,自己转换成head
        prev[index] = -1;
        next[index] = head;
        prev[head] = index;
        head = index;
    }
}
public final synchronized void addElement(Object key, Object value)
{
    int index;Object obj;
    obj = table.get(key);
    if(obj != null)
    {
        CacheElement entry;
        // Just replace the value, but move it to the front.
        entry = (CacheElement)obj;
        entry.setObjectValue(value);
        entry.setObjectKey(key);
        moveToFront(entry.getIndex());
        return;
    }
    // If we haven't filled the cache yet, place in next available
    // spot and move to front.
    if(!isFull())
    {
        if(_numEntries > 0)
        {
            prev[_numEntries] = tail;
            next[_numEntries] = -1;
            moveToFront(numEntries);
        }
        ++numEntries;
    }
    else { // We replace the tail of the list.
        table.remove(cache[tail].getObjectKey());
        moveToFront(tail);
    }
    cache[head].setObjectValue(value);
    cache[head].setObjectKey(key);
    table.put(key, cache[head]);
}

这段代码的逻辑如 LRU算法 的描述一样,把再次用到的缓存提取到最前面,而每次删除的都是最后面的元素

 

缓存技术杂谈

一般而言,现在互联网应用(网站或App)的整体流程,可以概括如图1所示,用户请求从界面(浏览器或App界面)到网络转发、应用服务再到存储(数据库或文件系统),然后返回到界面呈现内容。

随着互联网的普及,内容信息越来越复杂,用户数和访问量越来越大,我们的应用需要支撑更多的并发量,同时我们的应用服务器和数据库服务器所做的计算也越来越多。但是往往我们的应用服务器资源是有限的,且技术变革是缓慢的,数据库每秒能接受的请求次数也是有限的(或者文件的读写也是有限的),如何能够有效利用有限的资源来提供尽可能大的吞吐量?一个有效的办法就是引入缓存,打破标准流程,每个环节中请求可以从缓存中直接获取目标数据并返回,从而减少计算量,有效提升响应速度,让有限的资源服务更多的用户。

如图1所示,缓存的使用可以出现在1~4的各个环节中,每个环节的缓存方案与使用各有特点。

 

图1 互联网应用一般流程

缓存特征

缓存也是一个数据模型对象,那么必然有它的一些特征:

命中率

命中率=返回正确结果数/请求缓存次数,命中率问题是缓存中的一个非常重要的问题,它是衡量缓存有效性的重要指标。命中率越高,表明缓存的使用率越高。

最大元素(或最大空间)

缓存中可以存放的最大元素的数量,一旦缓存中元素数量超过这个值(或者缓存数据所占空间超过其最大支持空间),那么将会触发缓存启动清空策略根据不同的场景合理的设置最大元素值往往可以一定程度上提高缓存的命中率,从而更有效的时候缓存。

清空策略

如上描述,缓存的存储空间有限制,当缓存空间被用满时,如何保证在稳定服务的同时有效提升命中率?这就由缓存清空策略来处理,设计适合自身数据特征的清空策略能有效提升命中率。常见的一般策略有:

  • FIFO(first in first out)

    先进先出策略,最先进入缓存的数据在缓存空间不够的情况下(超出最大元素限制)会被优先被清除掉,以腾出新的空间接受新的数据。策略算法主要比较缓存元素的创建时间。在数据实效性要求场景下可选择该类策略,优先保障最新数据可用。

  • LFU(less frequently used)

    最少使用策略,无论是否过期,根据元素的被使用次数判断,清除使用次数较少的元素释放空间。策略算法主要比较元素的hitCount(命中次数)。在保证高频数据有效性场景下,可选择这类策略。

  • LRU(least recently used)

    最近最少使用策略,无论是否过期,根据元素最后一次被使用的时间戳,清除最远使用时间戳的元素释放空间。策略算法主要比较元素最近一次被get使用时间。在热点数据场景下较适用,优先保证热点数据的有效性。

除此之外,还有一些简单策略比如:

  • 根据过期时间判断,清理过期时间最长的元素;

  • 根据过期时间判断,清理最近要过期的元素;

  • 随机清理;

  • 根据关键字(或元素内容)长短清理等。

缓存介质

虽然从硬件介质上来看,无非就是内存和硬盘两种,但从技术上,可以分成内存、硬盘文件、数据库。

  • 内存:将缓存存储于内存中是最快的选择,无需额外的I/O开销,但是内存的缺点是没有持久化落地物理磁盘,一旦应用异常break down而重新启动,数据很难或者无法复原。

  • 硬盘:一般来说,很多缓存框架会结合使用内存和硬盘,在内存分配空间满了或是在异常的情况下,可以被动或主动的将内存空间数据持久化到硬盘中,达到释放空间或备份数据的目的。

  • 数据库:前面有提到,增加缓存的策略的目的之一就是为了减少数据库的I/O压力。现在使用数据库做缓存介质是不是又回到了老问题上了?其实,数据库也有很多种类型,像那些不支持SQL,只是简单的key-value存储结构的特殊数据库(如BerkeleyDB和Redis),响应速度和吞吐量都远远高于我们常用的关系型数据库等。

缓存分类和应用场景

缓存有各类特征,而且有不同介质的区别,那么实际工程中我们怎么去对缓存分类呢?在目前的应用服务框架中,比较常见的,时根据缓存雨应用的藕合度,分为local cache(本地缓存)和remote cache(分布式缓存):

  • 本地缓存:指的是在应用中的缓存组件,其最大的优点是应用和cache是在同一个进程内部,请求缓存非常快速,没有过多的网络开销等,在单应用不需要集群支持或者集群情况下各节点无需互相通知的场景下使用本地缓存较合适;同时,它的缺点也是因为缓存跟应用程序耦合,多个应用程序无法直接的共享缓存,各应用或集群的各节点都需要维护自己的单独缓存,对内存是一种浪费。

  • 分布式缓存:指的是与应用分离的缓存组件或服务,其最大的优点是自身就是一个独立的应用,与本地应用隔离,多个应用可直接的共享缓存

目前各种类型的缓存都活跃在成千上万的应用服务中,还没有一种缓存方案可以解决一切的业务场景或数据类型,我们需要根据自身的特殊场景和背景,选择最适合的缓存方案。缓存的使用是程序员、架构师的必备技能,好的程序员能根据数据类型、业务场景来准确判断使用何种类型的缓存,如何使用这种缓存,以最小的成本最快的效率达到最优的目的。

本地缓存

编程直接实现缓存

个别场景下,我们只需要简单的缓存数据的功能,而无需关注更多存取、清空策略等深入的特性时,直接编程实现缓存则是最便捷和高效的。

a. 成员变量或局部变量实现

简单代码示例如下:

    public void UseLocalCache(){
    //一个本地的缓存变量
    Map<String, Object> localCacheStoreMap = new HashMap<String, Object>();

   List<Object> infosList = this.getInfoList();
   for(Object item:infosList){
       if(localCacheStoreMap.containsKey(item)){ //缓存命中 使用缓存数据
           // todo
      } else { // 缓存未命中 IO获取数据,结果存入缓存
           Object valueObject = this.getInfoFromDB();
           localCacheStoreMap.put(valueObject.toString(), valueObject);

      }
  }
}
//示例
private List<Object> getInfoList(){
   return new ArrayList<Object>();
}
//示例数据库IO获取
private Object getInfoFromDB(){
   return new Object();
}

以局部变量map结构缓存部分业务数据,减少频繁的重复数据库I/O操作。缺点仅限于类的自身作用域内,类间无法共享缓存

b. 静态变量实现

最常用的单例实现静态资源缓存,代码示例如下:

      public class CityUtils {
     private static final HttpClient httpClient = ServerHolder.createClientWithPool();
     private static Map<Integer, String> cityIdNameMap = new HashMap<Integer, String>();
     private static Map<Integer, String> districtIdNameMap = new HashMap<Integer, String>();

 static {
   HttpGet get = new HttpGet("http://gis-in.sankuai.com/api/location/city/all");
   BaseAuthorizationUtils.generateAuthAndDateHeader(get,
           BaseAuthorizationUtils.CLIENT_TO_REQUEST_MDC,
           BaseAuthorizationUtils.SECRET_TO_REQUEST_MDC);
   try {
       String resultStr = httpClient.execute(get, new BasicResponseHandler());
       JSONObject resultJo = new JSONObject(resultStr);
       JSONArray dataJa = resultJo.getJSONArray("data");
       for (int i = 0; i < dataJa.length(); i++) {
           JSONObject itemJo = dataJa.getJSONObject(i);
           cityIdNameMap.put(itemJo.getInt("id"), itemJo.getString("name"));
      }
  } catch (Exception e) {
       throw new RuntimeException("Init City List Error!", e);
  }
}
   static {
   HttpGet get = new HttpGet("http://gis-in.sankuai.com/api/location/district/all");
   BaseAuthorizationUtils.generateAuthAndDateHeader(get,
           BaseAuthorizationUtils.CLIENT_TO_REQUEST_MDC,
           BaseAuthorizationUtils.SECRET_TO_REQUEST_MDC);
   try {
       String resultStr = httpClient.execute(get, new BasicResponseHandler());
       JSONObject resultJo = new JSONObject(resultStr);
       JSONArray dataJa = resultJo.getJSONArray("data");
       for (int i = 0; i < dataJa.length(); i++) {
           JSONObject itemJo = dataJa.getJSONObject(i);
           districtIdNameMap.put(itemJo.getInt("id"), itemJo.getString("name"));
      }
  } catch (Exception e) {
       throw new RuntimeException("Init District List Error!", e);
  }
}

   public static String getCityName(int cityId) {
     String name = cityIdNameMap.get(cityId);
     if (name == null) {
       name = "未知";
    }
      return name;
    }

   

转载于:https://www.cnblogs.com/itxiaok/p/10356668.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值