标题效果:有一个格子组件图,假设三个人在一条直线上,那么第一个人将不会看到第三人。现在,有一个人站在(1,1)在。我问他是否能看到n*n的人数的矩阵。
思考:如果你想站(1,1)这名男子看到了一个立场(x,y)一个人。gcd(x,y) == 1,这是一个经典的模型,仅仅要求出n以内phi的和就能够了。
方法就是线性筛。
CODE:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 40010
using namespace std;
int n;
bool not_prime[MAX];
int prime[MAX],primes;
int phi[MAX];
void Eratosthenes();
int main()
{
cin >> n;
n--;
Eratosthenes();
int ans = 0;
for(int i = 2;i <= n; ++i)
ans += phi[i];
cout << (ans << 1) + 3 << endl;
return 0;
}
void Eratosthenes()
{
phi[1] = 1;
for(int i = 2;i <= n; ++i) {
if(!not_prime[i])
prime[++primes] = i,phi[i] = i - 1;
for(int j = 1;j <= primes && prime[j] * i <= n; ++j) {
not_prime[prime[j] * i] = true;
if(i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
}
版权声明:本文博主原创文章。博客,未经同意不得转载。