[USACO06DEC]牛的野餐Cow Picnic DFS

解决奶牛在多个牧场间通过有向路径寻找共同聚会地点的问题,使用图论和深度优先搜索算法确定所有奶牛可达的牧场数量。

题目描述

The cows are having a picnic! Each of Farmer John's K (1 ≤ K ≤ 100) cows is grazing in one of N (1 ≤ N ≤ 1,000) pastures, conveniently numbered 1...N. The pastures are connected by M (1 ≤ M ≤ 10,000) one-way paths (no path connects a pasture to itself).

The cows want to gather in the same pasture for their picnic, but (because of the one-way paths) some cows may only be able to get to some pastures. Help the cows out by figuring out how many pastures are reachable by all cows, and hence are possible picnic locations.

K(1≤K≤100)只奶牛分散在N(1≤N≤1000)个牧场.现在她们要集中起来进餐.牧场之间有M(1≤M≤10000)条有向路连接,而且不存在起点和终点相同的有向路.她们进餐的地点必须是所有奶牛都可到达的地方.那么,有多少这样的牧场呢?

输入输出格式

输入格式:

Line 1: Three space-separated integers, respectively: K, N, and M

Lines 2..K+1: Line i+1 contains a single integer (1..N) which is the number of the pasture in which cow i is grazing.

Lines K+2..M+K+1: Each line contains two space-separated integers, respectively A and B (both 1..N and A != B), representing a one-way path from pasture A to pasture B.

输出格式:

Line 1: The single integer that is the number of pastures that are reachable by all cows via the one-way paths.

输入输出样例

输入样例#1: 复制
2 4 4
2
3
1 2
1 4
2 3
3 4
输出样例#1: 复制
2

说明

The cows can meet in pastures 3 or 4.

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 260005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 98765431;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;

inline int rd() {
	int x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == '-') f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}


ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }



/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1; y = 0; return a;
	}
	ans = exgcd(b, a%b, x, y);
	ll t = x; x = y; y = t - a / b * y;
	return ans;
}
*/

int n, m, K;
vector<int>vc[1002];
int cow[102];
int num[1002];
int vis[1002];

void dfs(int u) {
	int siz = vc[u].size();
	num[u]++; vis[u] = 1;
	for (int i = 0; i < siz; i++) {
		int v = vc[u][i];
		if (!vis[v])
			dfs(v);
	}
	return;
}

int main()
{
	//	ios::sync_with_stdio(0);
	K = rd(); n = rd(); m = rd();
	for (int i = 1; i <= K; i++)cow[i] = rd();
	for (int i = 1; i <= m; i++) {
		int u = rd(), v = rd();
		vc[u].push_back(v);
	}
	for (int i = 1; i <= K; i++) {
		ms(vis);
		dfs(cow[i]);
	}
	int ans = 0;
	for (int i = 1; i <= n; i++) {
	//	cout << i << ' ' << num[i] << endl;

		if (num[i] == K)ans++;
	}
	cout << ans << endl;
	return 0;
}

 

转载于:https://www.cnblogs.com/zxyqzy/p/10371617.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值