AtCoder Regular Contest 064 F - Rotated Palindromes

本文探讨了构造特定条件下的回文序列问题,通过算法分析,详细解释了如何计算在给定长度N和元素范围K的情况下,能通过旋转操作获得的不同回文序列数量。文章深入讨论了容斥原理的应用,并提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Statement

Takahashi and Aoki are going to together construct a sequence of integers.

First, Takahashi will provide a sequence of integers a, satisfying all of the following conditions:

  • The length of a is N.
  • Each element in a is an integer between 1 and K, inclusive.
  • a is a palindrome, that is, reversing the order of elements in a will result in the same sequence as the original.

Then, Aoki will perform the following operation an arbitrary number of times:

  • Move the first element in a to the end of a.

How many sequences a can be obtained after this procedure, modulo 109+7?

Constraints

  • 1≤N≤109
  • 1≤K≤109

Input

The input is given from Standard Input in the following format:

N K

Output

Print the number of the sequences a that can be obtained after the procedure, modulo 109+7.


Sample Input 1

Copy
4 2

Sample Output 1

Copy
6

The following six sequences can be obtained:

  • (1,1,1,1)
  • (1,1,2,2)
  • (1,2,2,1)
  • (2,2,1,1)
  • (2,1,1,2)
  • (2,2,2,2)

Sample Input 2

Copy
1 10

Sample Output 2

Copy
10

Sample Input 3

Copy
6 3

Sample Output 3

Copy
75

Sample Input 4

Copy
1000000000 1000000000

Sample Output 4

Copy
875699961

用1-k填序列,序列可以左移n次变为回文

不考虑移位总共有k^(n/2)个回文,所以就是一个容斥问题了

若回文串的最小循环节长度为c,经过c次操作后,得到c个序列
当c为偶数时,重复数为一半,奇数时,无重复 

所以这个问题就解决了,其循环节只可能是其因子

#include <bits/stdc++.h>
using namespace std;
const int N=2010,MD=1e9+7;
int v[N],f[N];
int Pow(int x,int y)
{
    int ans=1;
    for(;y;x=x*1LL*x%MD,y>>=1)if(y&1)ans=1LL*ans*x%MD;
    return ans;
}
int main()
{
    int n,k,tot=0,ans=0,i;
    cin>>n>>k;
    for(i=1; i*i<n; i++)
        if(n%i==0)v[tot++]=i,v[tot++]=n/i;
    if(i*i==n)v[tot++]=i;
    sort(v,v+tot);
    for(int i=0; i<tot; i++)
    {
        f[i]=Pow(k,(v[i]+1)/2);
        for(int j=0; j<i; j++)if(v[i]%v[j]==0) f[i]=(f[i]-f[j])%MD;
        if(v[i]&1) ans=(ans+1LL*v[i]*f[i])%MD;
        else ans=(ans+v[i]*1LL*Pow(2,MD-2)%MD*f[i])%MD;
    }
    cout<<(ans+MD)%MD;
}

 

 

转载于:https://www.cnblogs.com/BobHuang/p/9607224.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值