UVA 674 Coin Change(动态规划 母函数)

硬币找零问题
本文探讨了一种经典的组合计数问题——硬币找零问题,即利用特定面额的硬币组合来找出所有可能的找零方式。文章提供了两种解决方法:一种是使用母函数的方法,另一种是采用更高效的动态规划方法。
  Coin Change 

Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make changes with these coins for a given amount of money.

 


For example, if we have 11 cents, then we can make changes with one 10-cent coin and one 1-cent coin, two 5-cent coins and one 1-cent coin, one 5-cent coin and six 1-cent coins, or eleven 1-cent coins. So there are four ways of making changes for 11 cents with the above coins. Note that we count that there is one way of making change for zero cent.

 


Write a program to find the total number of different ways of making changes for any amount of money in cents. Your program should be able to handle up to 7489 cents.

 

Input 

The input file contains any number of lines, each one consisting of a number for the amount of money in cents.

 

Output 

For each input line, output a line containing the number of different ways of making changes with the above 5 types of coins.

 

Sample Input 

 

11
26

 

Sample Output 

4
13


题目大意:有5种货币,面值分别为1,5,10,25,50,求出给定价格共有多少种支付方式
看到这道题目,我的第一反应是母函数,拿来模板,一次超时,后来先打表便能AC。后来看大牛博客,原来可以用动态规划做的,时间复杂度为5*7500,这就是滚动数组吗?相比之下母函数就实在丑陋不堪了,现在贴两种代码如下:

母函数做法:
View Code
 1 #include<iostream>
 2 using namespace std;
 3 # define maxn 7490
 4 int c1[maxn],c2[maxn];
 5 int cent[5]={1,5,10,25,50};
 6 int main(){
 7     int n,i,j,k;    
 8     for(i=0;i<=maxn;i++)
 9     {c1[i] = 1;  c2[i] = 0;}
10     for(i=1;i<5;i++){
11         for(j=0;j<=maxn;j++)
12             for(k = 0; k+j <= maxn;k += cent[i])
13             {c2[j+k] += c1[j];}
14             for(j=0;j<=maxn;j++)
15             {c1[j] = c2[j]; c2[j] = 0;}
16     }
17     while(cin>>n){
18         cout<<c1[n]<<endl;
19     }
20     return 0;
21 }

 

动态规划代码:
View Code
 1 #include <iostream>
 2 #include <cstdio>
 3 
 4 using namespace std;
 5 # define maxn 7490
 6 
 7 int num[maxn];
 8 int cent[6]={0,1,5,10,25,50};
 9 
10 int main()
11 {
12     int n;    //初始化
13     for(int i=1;i<=maxn;i++)
14         num[i]=0;
15     num[0]=1;
16     
17     for(int t=1;t<=5;t++)
18         for(int i=1;i<=maxn;i++)
19         {
20             if(i>=cent[t]) num[i]+=num[i-cent[t]];    //  状态转移方程
21         }
22         while(cin>>n)
23         {
24             cout<<num[n]<<endl;
25         }
26         return 0;
27 }

 

 

 

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值