【Atcoder】AGC022 C - Remainder Game 搜索

本文介绍C-RemainderGame问题的解决思路,包括数字取模操作的优化策略,通过字典序最小化降低操作成本,以及判断必要性的方法。适用于编程竞赛和算法学习。

【题目】C - Remainder Game

【题意】给定n个数字的序列A,每次可以选择一个数字k并选择一些数字对k取模,花费2^k的代价。要求最终变成序列B,求最小代价或无解。n<=50,0<=ai,bi<=50。

【题解】首先需要一些性质:

1.一个数字取模k后,再取模>=k的数字就没有意义,因此操作顺序一定是k从大到小,并且每个k只用一次。

2.由于$2^k>2^{k-1}+2^{k-2}+...+2^0$,所以代价最小的序列一定是字典序最小的。

故现在要求字典序最小的严格递减的操作序列k,满足最终变成序列B。(到这里之后,LLQ处理出所有路径然后暴力从大到小推过去了……)

现在从大到小考虑每个k是否必要,如果1~k-1和之前必要的数字形成的集合可以使A变到B,那么k就不是必要的,否则是必要的。

判断是否能到达只需要记f[x]表示x是否能到达,枚举每个数字x,使f[x]=1后从大到小枚举转移。

复杂度O(n^4)。

转载于:https://www.cnblogs.com/onioncyc/p/8709126.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值