HDU 1372 Knight moves

本文探讨了在8×8棋盘上,从一个给定点到另一个给定点,按照马行日规则移动的最短步数问题。通过使用广度优先搜索算法(BFS),文章详细解释了如何确定两点间最小移动次数,并提供了完整的C++代码实现。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1372

Knight Moves

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14208    Accepted Submission(s): 8306

Problem Description
A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part. 

Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from a to b. 
 
Input
The input file will contain one or more test cases. Each test case consists of one line containing two squares separated by one space. A square is a string consisting of a letter (a-h) representing the column and a digit (1-8) representing the row on the chessboard. 
 
Output
For each test case, print one line saying "To get from xx to yy takes n knight moves.". 
 
Sample Input
e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6
 
Sample Output
To get from e2 to e4 takes 2 knight moves. To get from a1 to b2 takes 4 knight moves. To get from b2 to c3 takes 2 knight moves. To get from a1 to h8 takes 6 knight moves. To get from a1 to h7 takes 5 knight moves. To get from h8 to a1 takes 6 knight moves. To get from b1 to c3 takes 1 knight moves. To get from f6 to f6 takes 0 knight moves.
 
题意:在一个 8 × 8 的网格中,给你两个点,按马行日的方法走,求走的最短步数,注意下输出的格式,别只输出了结果没有输出那句话。。。

注意:马走日,有八个方向!

 1 #include<iostream>
 2 #include<queue>
 3 #include<cstdio>
 4 #include <cstring>
 5 
 6 using namespace std;
 7 
 8 int go[8][2] = {1,2,2,1,2,-1,1,-2,-1,-2,-2,-1,-2,1,-1,2};
 9 char s1[3],s2[3];
10 int sx,sy,ex,ey;
11 bool mark[10][10];
12 struct node
13 {
14     int x,y;
15     int step;
16 };
17 
18 void bfs()
19 {
20     queue<node> q;
21     struct node cu,ne;
22     cu.x = sx;
23     cu.y = sy;
24     cu.step =0;
25     mark[cu.x][cu.y] = 1; //别忘了标记,虽然本题不标记也可以;
26     q.push(cu);
27     while(!q.empty())
28     {
29         cu = q.front();
30         q.pop();
31         if(cu.x == ex && cu.y == ey)
32         {
33             printf("To get from %s to %s takes %d knight moves.\n",s1,s2,cu.step);
34             return ;
35         }
36         for(int i=0;i<8;i++)
37         {
38             ne.x = cu.x + go[i][0];
39             ne.y = cu.y + go[i][1];
40             if(ne.x>=0&&ne.x<8&&ne.y>=0&&ne.y<8&&!mark[ne.x][ne.y]) //注意这个范围是0--7的;
41             {
42                 ne.step = cu.step + 1;
43                 mark[ne.x][ne.y] = 1;
44                 q.push(ne);
45             }
46         }
47     }
48 }
49 int main()
50 {
51     //也可以用字母加数字的方式输入。eg while(scanf("%c%d %c%d",&c1,&d1,&c2,&d2),但别忘了输出也是字母加数字
52     while(scanf("%s%s",s1,s2)!=EOF) //这两个%s之间的空格有没有都可以
53     {
54         //a--h 和 1--8 数量是一样的,所以,a--h减'a'相当于0--7,所以,数字别忘了减 1 ;
55         sx = s1[0] - 'a';
56         sy = s1[1] - '1';
57         ex = s2[0] - 'a';
58         ey = s2[1] - '1';
59         memset(mark,0,sizeof(mark));
60         bfs();
61         memset(s1,0,sizeof(s1));
62         memset(s2,0,sizeof(s2));
63     }
64     return 0;
65 }
Ac代码

 

转载于:https://www.cnblogs.com/cypblogs/p/10023261.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值