A2 = np.array([[-1.18j, 0, 0, (-1.18j), 0, 0],
[0, -1.02190+0.59j, 0, 0, (-1.02190+0.59j), 0],
[0, 0, 1.02190+0.59j, 0, 0, (1.02190+0.59j)],
[-0.0882531952-1.136578802j, -1.319921224+0.904327353j, 0.8301548178+0.3965387477j, -(-0.07862256637-1.137285581j), -(-1.329362805+0.8903j), -(0.832387359+0.3918307538j)],
[-0.08796555526-1.1366011j, -1.314725292+0.9118647956j, 0.8298812447+0.3971109664j, -(-0.07036322539-1.137826444j), -(-1.312998814+0.943490118j), -(0.8312956166+0.3941415962j)],
[-0.08690752162-1.13668249j, -1.327258586+0.8935237237j, 0.8302286264+0.3963841922j, -(-0.08251588418-1.13700931j), -(-1.325183494+0.8965984089j),-(0.8318268405+0.393092202j)]]) # 超定系统的系数矩阵 (m > n)
b2 = np.array([[0.0000001 + 0.000001j], [0.0000001 + 0.000001j], [0.0000001 + 0.000001j],
[0.0000001 + 0.000001j], [0.0000001 + 0.000001j], [0.0000001 + 0.000001j]]) # 常量向量
b3 = np.array([[-1.18j*2], [(-1.02190+0.59j)*2], [(1.02190+0.59j)*2],
[0.00000001+0.00000001j], [0.0000001+0.00000001j], [0.0000001+0.00000001j]]) # 常量向量
这是我的数据
最新发布