Codeforces Round #FF (Div. 2):C. DZY Loves Sequences

本文探讨了一个问题:在给定的一系列整数中,找到一个最长的子序列,通过调整其中的一个元素,使得该子序列成为严格递增序列。通过输入一系列整数作为序列,并输出调整后的最长子序列长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. DZY Loves Sequences
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

DZY has a sequence a, consisting of n integers.

We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.

Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.

You only need to output the length of the subsegment you find.

Input

The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

Output

In a single line print the answer to the problem — the maximum length of the required subsegment.

Sample test(s)
Input
6
7 2 3 1 5 6
Output
5
Note

You can choose subsegment a2, a3, a4, a5, a6 and change its 3rd element (that is a4) to 4.


题意就是, 你能够改变字符串中的一个字符。 就出其最长的连续字串

如案列, 7 2 3 1 5 6 —————7 2 3  4 5 6

输出即为5.






#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<sstream>
#include<cmath>

using namespace std;

#define f1(i, n) for(int i=0; i<n; i++)
#define f2(i, m) for(int i=1; i<=m; i++)
#define f3(i, n) for(int i=n; i>=1; i--)
#define f4(i, n) for(int i=1; i<=n; i++)
#define f5(i, n) for(int i=2; i<=n; i++)
#define M 1005

const int INF = 0x3f3f3f3f;
int n, a[100005], b[100005];

int main()
{
    cin>>n;
    f4(i, n)
    cin>>a[i];
    b[1]=1;
    f5(i, n)
    {
        b[i]=1;
        if (a[i]>a[i-1])
            b[i]=b[i-1]+1;
    }
    int ans=-INF;
    f3(i, n)
    {
        if (b[i]==n)
            ans=max(b[i], ans);
        else
            ans=max(ans, b[i]+1);
        if (a[i-b[i]+1]-1>a[i-b[i]-1])
            ans=max(ans,b[i]+b[i-b[i]]);
        if (a[i-b[i]+2]-1>a[i-b[i]])
            ans=max(ans,b[i]+b[i-b[i]]);
    }
    cout<<ans<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值