运动背景下的运动目标检测

本文介绍了在运动背景下如何进行目标检测,主要聚焦于光流法和背景补偿技术。通过选取光流点,计算运动矢量,利用手段如meanshift聚类来检测和分割运动物体。同时,讨论了不同方法的优缺点,包括基于dx, dy特征以及结合显著性特征的检测结果。" 132959139,20037607,使用OpenCV绘制旋转矩形,"['计算机视觉', '图像处理', 'OpenCV']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各种目标检测方法介绍(懒人可以直接略过)

  目标检测是一个老话题了,在很多算法当中都有它的身影。目标检测要做的就两件事:检测当前图片中有没有目标?如果有的话,在哪?按照先验知识和背景运动来划分的话,目标检测方法大概可以分为两大类:

  第一,已知目标的先验知识。在这种情况下检测目标有两类方法,第一类方法是用目标的先验知识训练一堆弱分类器,然后这些弱分类器一起投票来检测目标,如boosting,  random forest 都是这个思路,大家熟知的adaboost人脸检测也是如此,这一类方法我会在以后的文章中讨论。第二类方法是根据先验知识找到目标和非目标的最佳划分线,如SVM.这两类方法各成一家,各有所长,都有着不错的表现。

  第二,未知目标的先验知识。此时不知道要检测的目标是什么,于是什么是目标就有了不同的定义。一种方法是检测场景中的显著目标,如通过一些特征表达出场景中每个像素的显著性概率,然后找到显著目标。另一种方法就是检测场景当中的运动目标了,这也是本文下面将要讨论的重点内容。

  在检测运动目标时,如果背景是静止的,so easy,略过。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值