[ POI 2011 ] Dynamite

\(\\\)

\(Description\)


一棵\(N\)个节点的树,树上有\(M\)个节点是关键点,选出\(K\)个特殊点,使得所有关键点到特殊点的距离中最大的最小,输出最大值最小为多少。

  • \(N\in [1,3\times 10^5]\)\(M,K\in [1,N]\)

\(\\\)

\(Solution\)


神仙树形DP验证方式

  • 首先最大值最小一眼二分,关键在于怎么\(check\)这个二分得到的最远距离。
  • 正解树型\(DP\),假设所有子树已经处理完毕,显然可以靠贡献和需求分为四类;
    • \(0\):可向上贡献,子树内已全部覆盖
    • \(1\):可向上贡献,子树内有待覆盖节点
    • \(2\):无可向上覆盖,子树内已全部覆盖
    • \(3\):无可向上覆盖,子树内有待覆盖节点
  • 有趣的是发现\(1\)\(3\)两类子树根节点的情况可合并,即\(1\)类节点的贡献是无意义的,为什么呢?因为子树内的点无法被覆盖,证明有贡献的点从根节点再往外的贡献长度是小于待覆盖节点到子树根节点距离的。而子树外的点若能够满足覆盖子树内待覆盖节点的要求,则外部节点从当前子树根节点延申出的长度为二倍的二分答案再减掉待覆盖节点到子树根节点的距离,显然比上一个长。于是点分类改为:
    • \(0\):可向上贡献,子树内已全部覆盖
    • \(1\):无可向上覆盖,子树内有待覆盖节点
    • \(2\):无可向上覆盖,子树内已全部覆盖
  • \(f[i]\)表示\(i\)号节点:向上最长贡献距离\((1)/\)子树内待覆盖节点到\(i\)号节点最大距离\((2)/0(3)\)
  • 然后就考虑当前节点的状态。统计所有有贡献的节点在根节点处的最大延申距离,即\(mx_1=max(mx_1,f[i]-1)\);统计所有待覆盖节点到当前根节点处最大距离,即\(mx_2=max(mx_2,f[i]+1)\)
  • 分情况讨论当前节点状态,注意若子树内待覆盖节点距离等于二分长度,当前点应设为特殊点,同时注意特判\(2\)类节点即可。
  • 还要注意在树型\(DP\)后若\(1\)号节点是待覆盖的使用节点数要\(+1\)

\(\\\)

\(Code\)


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 300010
#define R register
#define gc getchar
using namespace std;

int n,m,tot,cnt,d[N],hd[N];
int f[N],tag[N];

struct edge{int to,nxt;}e[N<<1];
inline void add(int u,int v){
  e[++tot].to=v; e[tot].nxt=hd[u]; hd[u]=tot;
}

inline int rd(){
  int x=0; bool f=0; char c=gc();
  while(!isdigit(c)){if(c=='-')f=1;c=gc();}
  while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
  return f?-x:x;
}

inline void dfs(int u,int fa,int lim){
  int mn=-1,mx=d[u]-1;
  for(R int i=hd[u];i;i=e[i].nxt)
    if(e[i].to!=fa) dfs(e[i].to,u,lim);
  for(R int i=hd[u];i;i=e[i].nxt)
    if(e[i].to!=fa){
      if(tag[e[i].to]==0) mn=max(mn,f[e[i].to]-1);
      else if(tag[e[i].to]==1) mx=max(mx,f[e[i].to]+1);
    }
  if(mn<mx){
    if(mx==lim){++cnt; f[u]=lim;tag[u]=0;}
    else{f[u]=mx;tag[u]=1;}
  }
  else if(mn!=-1){f[u]=mn; tag[u]=0;}
  else{f[u]=0;tag[u]=2;}
}

inline bool valid(int x){
  cnt=0; dfs(1,0,x);
  if(tag[1]==1) ++cnt;
  return cnt<=m;
}

int main(){
  n=rd(); m=rd();
  for(R int i=1;i<=n;++i) d[i]=rd();
  for(R int i=1,u,v;i<n;++i){
    u=rd(); v=rd(); add(u,v); add(v,u);
  }
  int l=0,r=n;
  while(l<r){
    int mid=((l+r)>>1);
    valid(mid)?r=mid:l=mid+1;
  }
  printf("%d\n",l);
  return 0;
}

转载于:https://www.cnblogs.com/SGCollin/p/9588405.html

变分模态分解(Variational Mode Decomposition, VMD)是一种强大的非线性、无参数信号处理技术,专门用于复杂非平稳信号的分析与分解。它由Eckart Dietz和Herbert Krim于2011年提出,主要针对传统傅立叶变换在处理非平稳信号时的不足。VMD的核心思想是将复杂信号分解为一系列模态函数(即固有模态函数,IMFs),每个IMF具有独特的频率成分和局部特性。这一过程与小波分析或经验模态分解(EMD)类似,但VMD通过变分优化框架显著提升了分解的稳定性和准确性。 在MATLAB环境中实现VMD,可以帮助我们更好地理解和应用这一技术。其核心算法主要包括以下步骤:首先进行初始化,设定模态数并为每个模态分配初始频率估计;接着采用交替最小二乘法,通过交替最小化残差平方和以及模态频率的离散时间傅立叶变换(DTFT)约束,更新每个模态函数和中心频率;最后通过迭代优化,在每次迭代中优化所有IMF的幅度和相位,直至满足停止条件(如达到预设迭代次数或残差平方和小于阈值)。 MATLAB中的VMD实现通常包括以下部分:数据预处理,如对原始信号进行归一化或去除直流偏置,以简化后续处理;定义VMD结构,设置模态数、迭代次数和约束参数等;VMD算法主体,包含初始化、交替最小二乘法和迭代优化过程;以及后处理,对分解结果进行评估和可视化,例如计算每个模态的频谱特性,绘制IMF的时频分布图。如果提供了一个包含VMD算法的压缩包文件,其中的“VMD”可能是MATLAB代码文件或完整的项目文件夹,可能包含主程序、函数库、示例数据和结果可视化脚本。通过运行这些代码,可以直观地看到VMD如何将复杂信号分解为独立模态,并理解每个模态的物理意义。 VMD在多个领域具有广泛的应用,包括信号处理(如声学、振动、生物医学信号分析)、图像处理(如图像去噪、特征提取)、金融时间序列分析(识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值