POJ 2031 prim

本文探讨了在构建包含多个不同大小球形单元的空间站时,如何设计最短的连接走廊来确保所有单元间通行的问题。通过实例输入和输出展示了算法实现和求解过程。
Building a Space Station
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 4400 Accepted: 2255
Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.
Input

The input consists of multiple data sets. Each data set is given in the following format.

n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.
Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.
Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
Sample Output

20.000
0.000
73.834
Source

Japan 2003 Domestic

<span style="color:#6600cc;">/*********************************************

        author    :    Grant Yuan
        time      :    2014.7.31
        algorithm :    prim
        source    :    POJ 2031
        
**********************************************/

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define INF 0x3fffffff
#define MAX 103

using namespace std;

struct edge{double x,y,z,r;};
double cost[MAX][MAX];
int n;
edge e[MAX];
double ans;
double mincost[MAX];
bool used[MAX];

void prim()
{
  ans=0;
  memset(used,0,sizeof(used));
  for(int i=1;i<=n;i++)
  {
      mincost[i]=INF;;
  }
  mincost[1]=0;
  while(1){
    int v=-1;
    for(int i=1;i<=n;i++)
    {
        if(!used[i]&&(v==-1||mincost[i]<mincost[v]))
            v=i;}
        if(v==-1) break;
        used[v]=true;
        ans+=mincost[v];
        for(int i=1;i<=n;i++)
        {
           mincost[i]=min(mincost[i],cost[v][i]);
        }

  }

}

int main()
{
    while(1){
    scanf("%d",&n);
    if(!n) break;
    for(int i=1;i<=n;i++)
    {
        scanf("%lf%lf%lf%lf",&e[i].x,&e[i].y,&e[i].z,&e[i].r);

    }
    for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
    {
        cost[i][j]=INF;
        cost[i][j]=cost[j][i]=sqrt((e[i].x-e[j].x)*(e[i].x-e[j].x)+(e[i].y-e[j].y)*(e[i].y-e[j].y)+(e[i].z-e[j].z)*(e[i].z-e[j].z))-e[i].r-e[j].r;
        if(cost[i][j]<0)
            cost[i][j]=cost[j][i]=0;
    }
    prim();
    printf("%.3f\n",ans);
    }
    return 0;

}










</span>


内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值