用keras 和 tensorflow 构建手写字识别神经网路

本文介绍了使用Keras深度学习库进行MNIST手写数字识别的两种方法。首先,通过构建一个简单的全连接神经网络,实现了对MNIST数据集的训练和测试,达到较高的识别准确率。其次,展示了另一种网络结构的实现方式,包括多层全连接层和Dropout层,进一步提高了模型的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#导入数据
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
print(train_images.shape)
print(train_images.dtype)
print(train_labels.shape)

print(test_images.shape)
print(test_labels.shape)

#图像转换
train_images = train_images.reshape((60000, 28*28))
train_images = train_images.astype('float32')/255

test_images = test_images.reshape((10000, 28*28))
test_images = test_images.astype('float32')/ 255

#构建网络
from keras import models
from keras import layers

network = models.Sequential()
network.add(layers.Dense(512, activation = 'relu', input_shape = (28*28, )))
network.add(layers.Dense(10, activation = 'softmax'))

network.compile(optimizer = 'rmsprop', loss = 'categorical_crossentropy', metrics = ['accuracy'])

#准备标签
from keras.utils import to_categorical

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

#模型拟合
network.fit(train_images, train_labels, epochs=5, batch_size = 128)

#测试模型
test_loss, test_acc = network.evaluate(test_images, test_labels)
print('test_acc:', test_acc)

 

换一种写法(来自Bilibili李宏毅 机器学习课程)

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.optimizers import SGD, Adam
from keras.utils import np_utils
from keras.datasets import mnist

def load_data():
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    number = 10000
    x_train = x_train[0:number]
    y_train = y_train[0:number]
    x_train = x_train.reshape(number, 28*28)
    x_test = x_test.reshape(x_test.shape[0], 28*28)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    #convert class vectors to binart vlass matrics
    y_train = np_utils.to_categorical(y_train, 10)
    y_test = np_utils.to_categorical(y_test, 10)
    x_train = x_train
    x_test = x_test
    #x_test = np.random.normal(x_test)
    x_train = x_train /255
    x_test = x_test / 255
    return (x_train, y_train), (x_test, y_test)

(x_train, y_train), (x_test, y_test) = load_data()
    
x_train.shape #(10000, 784)
y_train.shape #(10000, 10)
x_test.shape #(10000, 784)
y_test.shape #(10000, 10)

model = Sequential()
model.add(Dense(input_dim = 28*28, units = 800, activation = 'relu'))
#model.add(Dropout(0.7))
model.add(Dense(units=700, activation = 'relu'))
#model.add(Dropout(0.7))
model.add(Dense(units=700, activation = 'relu'))
#model.add(Dropout(0.7))
model.add(Dense(units=10, activation = 'softmax'))

model.compile(loss = 'categorical_crossentropy', optimizer = "adam", metrics = ['accuracy'])
model.fit(x_train, y_train, batch_size = 100, epochs = 20)

result = model.evaluate(x_test, y_test)
print("Test Acc:", result[1])

 

转载于:https://www.cnblogs.com/wbloger/p/10197596.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值