三维重建技术通过深度数据获取、预处理、点云配准与融合、生成表面等过程,把真实场景刻画成符合计算机逻辑表达的数学模型。这种模型可以对如文物保护、游戏开发、建筑设计、临床医学等研究起到辅助的作用。
1.1 研究背景及意义
人类通过双眼来探索与发现世界。人类接收外部信息的方式中,有不到三成来自于听觉、触觉、嗅觉等感受器官,而超过七成、最丰富、最复杂的信息则通过视觉[1]进行感知的。计算机视觉便是一种探索给计算机装备眼睛(摄像头)与大脑(算法)的技术,以使计算机能够自主独立的控制行为、解决问题,同时感知、理解、分析外部环境。20世纪60年代,计算机视觉得到了最初的发展。该阶段的研究重心主要体现在如何从二维图像中恢复出如立方体、圆柱体等立体化的三维形状,解释各个物体的空间位置关系。1982年,David Marr[2]从信息处理的角度对数学、神经生理学、计算机图形学等学科的研究成果进行了归纳总结,并在此基础上提出了一系列计算机视觉理论。得益于这个完整明确的理论体系,计算机视觉得到了蓬勃的发展。它的核心思想是从二维图像恢复三维结构。图1-1展示的是经典Marr视觉信息处理过程。
图1-1 Marr视觉信息处理过程
Fig.1-1 Process of Marr visual information
随着科学技术的日新月异,计算机视觉的应用日益受到各行业的关注和重视,如设备检测与监视、医学图像处理、文物保护[3]、机器人视觉、自动导航、工业产品外观设计与生产等领域。计算机视觉技术为人们带来了机遇,也带来了挑战。三维重建作为计算机视觉技术中最为最为热门的研究方向之一,涉及到包括图像处理、立体视觉、模式识别等多个学科体系。利用计算机建立表达现实客观景物的三维模型,并以此来满足生产和生活的需要。随着工业化进程的不断发展,多种技术的实现均有赖于目标物体三维信息的获取。三维重建现已被广发的应用于生活和科研工作中,特别是在医学治疗、文物保护、游戏开发、工业设计、航天航海等方面,展现出了极强的生命力和影响力。
1.2 三维重建技术简介
三维重建技术的重点在于如何获取目标场景或物体的深度信息。在景物深度信息已知的条件下,只需要经过点云数据[4]的配准及融合,即可实现景物的三维重建。基于三维重建模型的深层次应用研究也可以随即展开。人们按照被动式测量与主动式测量[5]对目标物体深度信息的获取方法进行了分类,下面对这两种方式进行相应的介绍。
1.2.1 被动式三维重建技术
被动式一般利用周围环境如自然光的反射,使用相机获取图像,然后通过特定算法计算得到物体的立体空间信息。主要有以下三种方法:
1.纹理恢复形状法
各种物体表面具有不同的纹理信息,这种信息由纹理元组成,根据纹理元可以确定表面方向,从而恢复出相应的三维表面。这种方法称为纹理恢复形状法[6] (Shape From Texture,SFT)。
纹理法的基本理论为