0916---编译原理第二次作业

本文介绍了一个使用C语言编写的简单符号分析器程序,该程序能够解析输入的字符并将其转换为特定的符号代码,例如算术运算符、比较运算符等。通过对不同字符组合的判断,程序可以识别如赋值操作、括号、分号等常见的语法元素。

#include<stdio.h>

void Fenxi(a,b);

int i;

 

void Fenxi(a,b)

{

    switch(a){

        case'+':

            printf("(13,+)");

            break;

        case'-':

            printf("(14,-)");

            break;

        case'*':

            printf("(15,*)");

            break;

        case'/':

            printf("(16,/)");

            break;

        case':':

            if(b=='=')

            {

                i++;

                printf("(18,:=)");

            }

            else

                printf("(17,:)");

            break;

        case'<':

            if(b=='>')

            {

                i++;

                printf("(21,<>)");

            }

            else if(b=='=')

            {

                i++;

                printf("(22,<=)");

            }

            else

                printf("(20,<)");

            break;

        case'>':

            if(b=='=')

            {

                i++;

                printf("(24,>=)");

            }

            else

                printf("(23,>)");

            break;

        case'=':

            printf("(25,=)");

            break;

        case';':

            printf("(26,;)");

            break;

        case'(':

            printf("(27,()");

            break;

        case')':

            printf("(28,))");

            break;

        case'#':

            printf("(20,#)");

            break;

        default:

            break;

}

main(){

    char a[50];

    printf("请输入源程序:");

    gets(a);

    printf("您要分析的源程序为:");

    printf("%s",a);

 

 

    printf("\n");

    for(i=0;i<50;i++)

    {

        Fenxi(a[i],a[i+1]);

    }

    printf("\n");

}

 

}

转载于:https://www.cnblogs.com/joker317/p/4826983.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值