解析函數論 Page 29 命題(1) 有界閉集上的一致連續性

本文详细阐述了在有界闭集上的连续复变函数具有一致连续性的证明过程,通过利用无限个开圆盘覆盖集合并应用有限覆蓋定理,最终证明了对于任何给定的复数ε,都存在相应的复数δ,使得在该δ范围内函数值的变化小于ε。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有界閉集$F$上的連續復變函數$f(z)$具有一致連續性,也就是說:對於任意給定的複數$\varepsilon$,都存在相應的複數$\delta$,使得對於$F$上的任意點$x_0$來說,當$|x-x_0|<|\delta|$時,都有

\begin{equation}
|f(x)-f(x_0)|<|\varepsilon|
\end{equation}

 

 

證明:對於任意給定的複數$\varepsilon$和$F$上的每一個點$x_0$來說,都存在相應的複數$\delta$,使得$\forall x\in (x_0-\delta,x_0+\delta)$,都有\begin{equation}\label{eq:1.11.11}|f(x)-f(x_0)|<\varepsilon\end{equation}顯然,對於$F$內不同的點$x_0$,都會對應各自的$\delta$,使$\ref{eq:1.11.11}$式滿足.而$x_0$有無限個,所以$\delta$也有無限個.這樣子,我們就用無限個開圓盤覆蓋了$F$.根據有限覆蓋定理,無限個開圓盤中必定存在有限個開圓盤,使得這有限個開圓盤也能覆蓋$F$.這有限個覆蓋$F$的開圓盤中必定存在半徑最小者,最小的半徑記爲$\min \{|\delta|\}$.然後我們把這有限個覆蓋$F$的開圓盤的半徑全變爲$\min \{|\delta|\}$,得到新的有限個覆蓋$F$的圓盤,每個圓盤的半徑都是$\min \{|\delta\}$.

 

對於$F$中的任意一點$x_0$來說,當$|x-x_0|<\min\{\delta\}$時,我們易得$|f(x)-f(x_0)|\leq 2|\varepsilon|$(爲什麼?提示:請畫圖,根據圓的幾何性質).

 

可見,命題得證.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/11/14/3827696.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值