参考:http://www.cnblogs.com/engine1984/archive/2007/08/22/865562.html

http://www.cppblog.com/suiaiguo/archive/2009/07/23/90904.html

http://blog.youkuaiyun.com/feixiaoxing/article/details/7243664


进程概念
  进程是表示资源分配的基本单位,又是调度运行的基本单位。例如,用户运行自己的程序,系统就创建一个进程,并为它分配资源,包括各种表格、内存空间、磁盘空间、I/O设备等。然后,把该进程放人进程的就绪队列。进程调度程序选中它,为它分配CPU以及其它有关资源,该进程才真正运行。所以,进程是系统中的并发执行的单位。
  在Mac、Windows NT等采用微内核结构的操作系统中,进程的功能发生了变化:它只是资源分配的单位,而不再是调度运行的单位。在微内核系统中,真正调度运行的基本单位是线程。因此,实现并发功能的单位是线程。
线程概念
  线程是进程中执行运算的最小单位,亦即执行处理机调度的基本单位。如果把进程理解为在逻辑上操作系统所完成的任务,那么线程表示完成该任务的许多可能的子任务之一。例如,假设用户启动了一个窗口中的数据库应用程序,操作系统就将对数据库的调用表示为一个进程。假设用户要从数据库中产生一份工资单报表,并传到一个文件中,这是一个子任务;在产生工资单报表的过程中,用户又可以输人数据库查询请求,这又是一个子任务。这样,操作系统则把每一个请求――工资单报表和新输人的数据查询表示为数据库进程中的独立的线程。线程可以在处理器上独立调度执行,这样,在多处理器环境下就允许几个线程各自在单独处理器上进行。操作系统提供线程就是为了方便而有效地实现这种并发性
引入线程的好处
(1)易于调度。
(2)提高并发性。通过线程可方便有效地实现并发性。进程可创建多个线程来执行同一程序的不同部分。
(3)开销少。创建线程比创建进程要快,所需开销很少。。
(4)利于充分发挥多处理器的功能。通过创建多线程进程(即一个进程可具有两个或更多个线程),每个线程在一个处理器上运行,从而实现应用程序的并发性,使每个处理器都得到充分运行。
进程和线程的关系
(1)一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。
(2)资源分配给进程,同一进程的所有线程共享该进程的所有资源。
(3)处理机分给线程,即真正在处理机上运行的是线程。
(4)线程在执行过程中,需要协作同步。不同进程的线程间要利用消息通信的办法实现同步。



我们要操作线程,就必须依赖于操作系统提供的接口。下面我们来简要介绍一下操作系统提供的跟线程相关的API函数:

None.gifHANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,
None.gif                 DWORD dwStackSize,
None.gif                 LPTHREAD_START_ROUTINE lpStartAddress,
None.gif                 LPVOID lpParameter,
None.gif                 DWORD dwCreationFlags,
None.gif                 LPDWORD lpThreadId);

该函数在其调用进程的进程空间里创建一个新的线程,并返回已建线程的句柄,其中各参数说明如下:
lpThreadAttributes:指向一个 SECURITY_ATTRIBUTES 结构的指针,该结构决定了线程的安全属性,一般置为 NULL;
dwStackSize:指定了线程的堆栈深度,一般都设置为0;
lpStartAddress:表示新线程开始执行时代码所在函数的地址,即线程的起始地址。一般情况为(LPTHREAD_START_ROUTINE)ThreadProcess,ThreadProcess 是线程函数名;
lpParameter:指定了线程执行时传送给线程的32位参数,即线程函数的参数;
dwCreationFlags:控制线程创建的附加标志,可以取两种值。如果该参数为0,线程在被创建后就会立即开始执行;如果该参数为CREATE_SUSPENDED,则系统产生线程后,该线程处于挂起状态,并不马上执行,直至函数ResumeThread被调用;
lpThreadId:该参数返回所创建线程的ID;
如果创建成功则返回线程的句柄,否则返回NULL。

DWORD SuspendThread(HANDLE hThread);

该函数用于挂起指定的线程,如果函数执行成功,则线程的执行被终止。


None.gifDWORD ResumeThread(HANDLE hThread);

该函数用于结束线程的挂起状态,执行线程。

VOID ExitThread(DWORD dwExitCode);

该函数用于“线程终结自身的执行”,主要在“线程的执行函数中"被调用。其中参数dwExitCode用来设置线程的退出码。

None.gifBOOL TerminateThread(HANDLE hThread,DWORD dwExitCode);

一般情况下,线程运行结束之后,线程函数正常返回,但是应用程序可以调用TerminateThread强行终止某一线程的执行。各参数含义如下:
hThread:将被终结的线程的句柄;
dwExitCode:用于指定线程的退出码。
使用TerminateThread()终止某个线程的执行是不安全的,可能会引起系统不稳定;虽然该函数立即终止线程的执行,但并不释放线程所占用的资源。因此,一般不建议使用该函数

---------------------------------------------------------------------------------------------------------------------------------------------------------------

Linux“线程”

    进程与线程之间是有区别的,不过Linux内核只提供了轻量进程的支持,未实现线程模型。Linux是一种“多进程单线程”的操作系统。Linux本身只有进程的概念,而其所谓的“线程”本质上在内核里仍然是进程。

    大家知道,进程是资源分配的单位,同一进程中的多个线程共享该进程的资源(如作为共享内存的全局变量)。Linux中所谓的“线程”只是在被创建时clone了父进程的资源,因此clone出来的进程表现为“线程”,这一点一定要弄清楚。因此,Linux“线程”这个概念只有在打冒号的情况下才是最准确的。

    目前Linux中最流行的线程机制为LinuxThreads,所采用的就是线程-进程“一对一”模型,调度交给核心,而在用户级实现一个包括信号处理在内的线程管理机制。LinuxThreads由Xavier Leroy (Xavier.Leroy@inria.fr)负责开发完成,并已绑定在GLIBC中发行,它实现了一种BiCapitalized面向Linux的Posix 1003.1c “pthread”标准接口。Linuxthread可以支持Intel、Alpha、MIPS等平台上的多处理器系统。

  按照POSIX 1003.1c 标准编写的程序与Linuxthread 库相链接即可支持Linux平台上的多线程,在程序中需包含头文件pthread. h,在编译链接时使用命令:

gcc -D -REENTRANT -lpthread xxx. c


  其中-REENTRANT宏使得相关库函数(如stdio.h、errno.h中函数) 是可重入的、线程安全的(thread-safe),-lpthread则意味着链接库目录下的libpthread.a或libpthread.so文件。使用Linuxthread库需要2.0以上版本的Linux内核及相应版本的C库(libc 5.2.18、libc 5.4.12、libc 6)。


2.“线程”控制

  线程创建

  进程被创建时,系统会为其创建一个主线程,而要在进程中创建新的线程,则可以调用pthread_create:

extern int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *
(start_routine)(void*), void *arg);

pthread_t在头文件/usr/include/bits/pthreadtypes.h中定义:
  typedef unsigned long int pthread_t;
  它是一个线程的标识符。第二个参数用来设置线程属性,

  start_routine为新线程的入口函数,arg为传递给start_routine的参数。

当创建线程成功时,函数返回0,若不为0则说明创建线程失败,常见的错误返回代码为EAGAIN和EINVAL。前者表示系统限制创建新的线程,例如线程数目过多了;后者表示第二个参数代表的线程属性值非法。创建线程成功后,新创建的线程则运行参数三和参数四确定的函数,原来的线程则继续运行下一行代码。

一个线程也可以在创建后使用pthread_self()调用获取自己的线程ID:

pthread_self (void) ;

三 pthread_join

函数pthread_join用来等待一个线程的结束。函数原型为:
  extern int pthread_join __P ((pthread_t __th, void **__thread_return));
  第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。一个线程的结束有两种途径,一种是象我们上面的例子一样,函数结束了,调用它的线程也就结束了;另一种方式是通过函数pthread_exit来实现。它的函数原型为:
  extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__));

eg: pthread_exit(NULL);

  写在线程内,表示此线程退出;唯一的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给 thread_return。最后要说明的是,一个线程不能被多个线程等待,否则第一个接收到信号的线程成功返回,其余调用pthread_join的线程则返回错误代码ESRCH。


  线程退出

  线程的退出方式有三:

  (1)执行完成后隐式退出;

  (2)由线程本身显示调用pthread_exit 函数退出;

pthread_exit (void * retval) ;


  (3)被其他线程用pthread_cance函数终止:

pthread_cance (pthread_t thread) ;


  在某线程中调用此函数,可以终止由参数thread 指定的线程。

  如果一个线程要等待另一个线程的终止,可以使用pthread_join函数,该函数的作用是调用pthread_join的线程将被挂起直到线程ID为参数thread的线程终止:

pthread_join (pthread_t thread, void** threadreturn);