ROIPooing

暂时不纠结 faster rcnn 最后一步是不是全连接层(gluoncv里面是rcnn层);

说一下feature map 和 anchor (Proposal) 作为输入,怎么计算ROIPooing ,怎么对应的。

例:

anchor [0,0,0,20,20] 缩放后是 3*3,ROIPooing 2*2,feature map 4*4;

from mxnet import nd

X = nd.arange(16).reshape((1,1,4,4))
print(X)

rois = nd.array([[0,0,0,20,20],[0,0,10,30,30]])

print(nd.ROIPooling(X,rois,pooled_size=(2,2),spatial_scale=0.1))

 这在gluoncv里面是同样的写法:默认_roi_size = (14,14)

# ROI features
if self._roi_mode == 'pool':
    pooled_feat = F.ROIPooling(feat, rpn_roi, self._roi_size, 1. / self._stride)
elif self._roi_mode == 'align':
    pooled_feat = F.contrib.ROIAlign(feat, rpn_roi, self._roi_size, 1. / self._stride,
                                             sample_ratio=2)

之后可以来一个完整的gluoncv 的 faster rcnn 的 forward 计算的分析 ^_^

转载于:https://www.cnblogs.com/TreeDream/p/10298072.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值