组合数学 - 母函数 + 模板题 : 整数拆分问题

本文探讨了给定正整数N的拆分问题,即寻找所有可能的组合方式使得N等于若干个正整数之和。通过经典母函数方法解决此问题,并提供了一个时间复杂度为O(n^3)的实现方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13129    Accepted Submission(s): 9285


Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
 

 

Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

 

Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

 

Sample Input
4
10
20
 

 

Sample Output
5
42
627
 

 

Author
Ignatius.L
 
 

 

Mean: 

 给你一个n,问你n的拆分有多少种。

analyse:

 经典的母函数运用题,不解释。

Time complexity:O(n^3)

 

Source code:

 

// Memory   Time
// 1347K     0MS
// by : Snarl_jsb
// 2014-09-18-15.21
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<string>
#include<climits>
#include<cmath>
#define N 1000010
#define LL long long
using namespace std;
int c1[300],c2[300];
int main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(0);
//    freopen("C:\\Users\\ASUS\\Desktop\\cin.cpp","r",stdin);
//    freopen("C:\\Users\\ASUS\\Desktop\\cout.cpp","w",stdout);
    int n;
    while(cin>>n)
    {
        memset(c1,0,sizeof(c1));
        memset(c2,0,sizeof(c2));
        for(int i=0;i<=n;++i)
        {
            c1[i]=1;
        }
        for(int i=2;i<=n;i++)
        {
            for(int j=0;j<=n;++j)
            {
                for(int k=0;k<=n;k+=i)
                {
                    c2[k+j]+=c1[j];
                }
            }
            for(int j=0;j<=n;++j)
            {
                c1[j]=c2[j];
                c2[j]=0;
            }
        }
        cout<<c1[n]<<endl;
    }
    return 0;
}

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值