网络流的最小割问题,看到分配成两部分的题,就要想到网络流最小割,割值是一部分指向另一部分的边的初始容量的总和,不加上另一部分指向本部分的边的容量。而对于最小割来说,最大流流量就是最小割的容量。而划分方法,就是将最大流后残余网络中s可以走到的点划为s集合,其余点划为t集合,注意,不是可以走到t的点,因为有可能有一条线上的多条边都流满的情况,这种情况下有些点就无法走到t,而且s也走不到它。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
#define N 20005
#define M 500005
#define typec int
const typec inf = 0x3f3f3f3f;
struct edge
{
int x, y, nxt;
typec c;
} bf[M];
int ne, head[N], cur[N], ps[N], dep[N];
void addedge(int x, int y, typec c)
{
bf[ne].x = x;
bf[ne].y = y;
bf[ne].c = c;
bf[ne].nxt = head[x];
head[x] = ne++;
bf[ne].x = y;
bf[ne].y = x;
bf[ne].c = 0;
bf[ne].nxt = head[y];
head[y] = ne++;
}
void addedge1(int x, int y, typec c)
{
bf[ne].x = x;
bf[ne].y = y;
bf[ne].c = c;
bf[ne].nxt = head[x];
head[x] = ne++;
bf[ne].x = y;
bf[ne].y = x;
bf[ne].c = c;
bf[ne].nxt = head[y];
head[y] = ne++;
}
typec flow(int n, int s, int t)
{
typec tr, res = 0;
int i, j, k, f, r, top;
while (1)
{
memset(dep, -1, n * sizeof(int));
for (f = dep[ps[0] = s] = 0, r = 1; f != r;)
{
for (i = ps[f++], j = head[i]; j; j = bf[j].nxt)
{
if (bf[j].c && -1 == dep[k = bf[j].y])
{
dep[k] = dep[i] + 1;
ps[r++] = k;
if (k == t)
{
f = r;
break;
}
}
}
}
if (-1 == dep[t])
break;
memcpy(cur, head, n * sizeof(int));
for (i = s, top = 0;;)
{
if (i == t)
{
for (k = 0, tr = inf; k < top; ++k)
if (bf[ps[k]].c < tr)
tr = bf[ps[f = k]].c;
for (k = 0; k < top; ++k)
bf[ps[k]].c -= tr, bf[ps[k] ^ 1].c += tr;
res += tr;
i = bf[ps[top = f]].x;
}
for (j = cur[i]; cur[i]; j = cur[i] = bf[cur[i]].nxt)
if (bf[j].c && dep[i] + 1 == dep[bf[j].y])
break;
if (cur[i])
{
ps[top++] = cur[i];
i = bf[cur[i]].y;
}
else
{
if (0 == top)
break;
dep[i] = -1;
i = bf[ps[--top]].x;
}
}
}
return res;
}
int main()
{
//freopen("D:\\t.txt", "r", stdin);
int n, m;
scanf("%d%d", &n, &m);
ne = 2;
memset(head, 0, sizeof(head));
n += 2;
int s = 0;
int t = 1;
for (int i = 2; i < n; i++)
{
int a, b;
scanf("%d%d", &a, &b);
addedge(s, i, a);
addedge(i, t, b);
}
for (int i = 0; i < m; i++)
{
int x, y, c;
scanf("%d%d%d", &x, &y, &c);
addedge1(x + 1, y + 1, c);
}
printf("%d\n", flow(n, s, t));
return 0;
}