leetcode 762. Prime Number of Set Bits in Binary Representation

Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime number of set bits in their binary representation.

(Recall that the number of set bits an integer has is the number of 1s present when written in binary. For example, 21 written in binary is 10101 which has 3 set bits. Also, 1 is not a prime.)

 

Example 1:

Input: L = 6, R = 10
Output: 4
Explanation:
6 -> 110 (2 set bits, 2 is prime)
7 -> 111 (3 set bits, 3 is prime)
9 -> 1001 (2 set bits , 2 is prime)
10->1010 (2 set bits , 2 is prime)

Example 2:

Input: L = 10, R = 15
Output: 5
Explanation:
10 -> 1010 (2 set bits, 2 is prime)
11 -> 1011 (3 set bits, 3 is prime)
12 -> 1100 (2 set bits, 2 is prime)
13 -> 1101 (3 set bits, 3 is prime)
14 -> 1110 (3 set bits, 3 is prime)
15 -> 1111 (4 set bits, 4 is not prime)

Note:

  1. L, R will be integers L <= R in the range [1, 10^6].
  2. R - L will be at most 10000.

解法1:

直接暴力

class Solution(object):
    def countPrimeSetBits(self, L, R):
        """
        :type L: int
        :type R: int
        :rtype: int
        """
        # for echo num:
        #    count bits in num and judge if it is prime        
        prime_nums = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
        
        def count_1bits(n):
            ans = 0
            while n:
                ans += 1
                n = n & (n-1)
            return ans
        
        ans = 0
        for n in range(L, R+1):
            bits = count_1bits(n)
            if bits in prime_nums:
                ans += 1
        return ans

解法2:使用dp,比较巧妙!因为 数字num中1的个数=num/2中1的个数+num末尾数字是否为1

虽然会说超时,但还是值得掌握的。

class Solution(object):
    def countPrimeSetBits(self, L, R):
        """
        :type L: int
        :type R: int
        :rtype: int
        """      
        prime_nums = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
        
        def count_bits(n):
            bits = [0]*(n+1)
            for i in range(1, n+1):
                bits[i] = bits[i>>1] + (i&1)
            return bits

        ans = 0
        bits = count_bits(R)
        for n in range(L, R+1):
            if bits[n] in prime_nums:
                ans += 1                
        return ans

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值