HDU 2174 取(m堆)石子游戏

本文介绍了一种经典的组合游戏——尼姆博弈模型,并详细探讨了其核心策略与算法实现。通过分析,文章揭示了如何利用异或运算判断游戏状态并制定获胜策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

只是一道NIM(尼姆博弈)题;

尼姆博弈模型,是ACM题中常见的组合游戏中的一种,大致上是这样的:
有3堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取1个,多者不限,最后取光者得胜

这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是必败态,无论谁面对(0,0,0) ,都必然失败;第二种必败态是(0,n,n),自己在某一堆拿走k(k ≤ n)个物品,不论k为多少,对方只要在另一堆拿走k个物品,最后自己都将面临(0,0,0)的局势,必败。仔细分析一下,(1,2,3)也是必败态,无论自己如何拿,接下来对手都可以把局势变为(0,n,n)的情形。

计算机算法里面有一种叫做按位模2加,叫做异或的运算,我们用符号XOR表示这种运算,这种运算和一般加法不同的一点是1 XOR 1 = 0。先看(1,2,3)的按位模2加的结果:
1 = 二进制01
2 = 二进制10
3 = 二进制11  XOR
———————
0 = 二进制00 (注意不进位)
 
对于奇异局势(0,n,n)也一样,结果也是0。
任何奇异局势(a,b,c)都有a XOR b XOR c = 0。

如果我们面对的是一个非必败态(a,b,c),要如何变为必败态呢?假设 a < b < c,我们只要将 c 变为a XOR b,即可。因为有如下的运算结果:
a ^ b ^ (a ^ b)=(a ^ a) ^ (b ^ b) = 0 ^ 0 = 0。
要将c 变为a ^ b,只要对 c进行 c-(a ^ b)这样的运算即可。

尼姆博弈模型可以推广到:有n堆若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这个游戏中的变量是堆数k和各堆的物品数N1,N2,……,Nk。对应的组合问题是,确定先手获胜还是后手获胜以及两个游戏人应该如何取物品才能保证自己获胜(获胜策略)

为了进一步理解Nim取物品游戏,我们考查某些特殊情况。如果游戏开始时只有一堆物品,先手则通过取走所有的物品而获胜。现在设有2堆物品,且物品数量分别为N1和N2。游戏者取得胜利并不在于N1和N2的值具体是多少,而是取决于它们是否相等。设N1!=N2,

View Code
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
using namespace std;
int num[200024];
int main(  )
{
    int n;
    while( scanf( "%d" ,&n ),n )
    {
        int x = 0;
        for( int i = 0 ; i < n ; i ++ )
        {
             scanf( "%d",&num[i] );
             x ^= num[i];     
        }       
        if( x == 0 ) printf( "No\n" );
        else
        {
            printf( "Yes\n" );
            for( int i = 0; i < n; i ++ )
            {
               int t = x ^ num[i];
               if( t <= num[i] )
               {
                   printf( "%d %d\n",num[i] , t );    
               }     
            }    
        }
    }
    //system( "pause" );
    return 0;
}

 

先手从大堆中取走的物品使得两堆物品数量相等,后手再拿,于是,先手以后每次取子的数量与后手相等而最终获胜。但是如果N1= N2,则:后手只要按着先手拿的数量在另一堆中取相等数量的物品,最终获胜者将会是后手。这样,两堆的取子获胜策略就已经找到了。

现在我们如何从两堆的取子策略扩展到任意堆数中呢?
首先来回忆一下,每个正整数都有对应的一个二进制数,例如:57(10) = 111001(2) ,即:57(10)=25+24+23+20。于是,我们可以认为每一堆物品数由2的幂数的子堆组成。这样,含有57枚物品大堆就能看成是分别由数量为25、24、23、20的各个子堆组成。

转载于:https://www.cnblogs.com/bo-tao/archive/2012/04/16/2452715.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值