上一章(https详解小白入门版(1)-什么是对称加密)简单介绍了什么是对称加密,主要是为了这篇非对称加密做对比和铺垫。
一 什么是非对称加密了?
对称加密有两个密钥(公钥和私钥,两个密钥是不一样的),所谓的公钥了,就是会公布出去的,随便谁都可以获取到。私钥了,就是你自己保存的,不能让别人知道的(和对称加密的私钥一样的作用)。公钥和私钥的作用是对立的,一个用来加密,另一个就用来解密。不能同样一个密钥既可以加密,又可以解密(和对称加密刚好相反,记住哦)。
OK,咱还是准备在老婆不在的时候找你出去做大保健。还是用加密邮件。怎么加密了? 我先让你用非对称加密算法生成一对公钥和私钥,然后让你把公钥给我,私钥好好保存。这时候那孙子又想来窃听我的邮件,没事,我还大方的直接把公钥给他,玩蛋去吧。然后了,我写了封邮件,内容是:保利俱乐部又来了新的软妹子,晚上9点一起去哈。
然后了,我用你给的公钥加密了这封邮件,并且发送给你。窃听的孙子了,估计费力还是窃听到了。但是拿着公钥没办法解密啊。你成功收到了邮件,并且用你保存的私钥解密这封邮件。然后晚上我们开开信息的一起去保利俱乐部,结果被警察抓了,还上了新闻(网传北京扫黄被抓名单 牵出知名网红投资人)。。。。
不管怎么样,这种加密手段确实比对称加密更安全,对不对?
那为什么我们不淘汰对称加密了?原因就是因为对称加密的效率比非对称加密的效率高。
二 非对称加密算法原理(主要研究RSA)
对称加密,在不了解算法的情况下,我们在心里大概都能有个模糊的概念。无非就是拿一把密钥,左拐,左拐,再左拐,把数据给加密了。然后拿着这把钥匙右拐,右拐,再右拐,把数据给解密了。
可是非对称加密,我们心里连个大概的概念也没办法形成,所以我们一起研究非对称加密的算法原理。
先介绍几个概念:
1,公约数:公约数,亦称“公因数”。它是一个能被若干个整数同时均整除的整数,对任意的若干个正整数,1总是它们的公因数。例如:12和15的公约数有1,3,其中最大的公约数就是3
2, 什么是素数,素数又称为质素,是除了1和本身,都不能被正除的数(非素数就称为合数)。比如7就是素数,因为它只能被1和7整除。8就不是素数,8能被1,8,2,4整除。
这里延伸一下查找素数的算法。这里
3,互质关系:如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系(coprime)。比如,15和32没有公因子(公约数),所以它们是互质关系。这说明,不是质数也可以构成互质关系。
4,欧拉公式:
任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(比如,在1到8之中,有多少个数与8构成互质关系?)
计算这个值的方法就叫做欧拉函数,以φ(n)表示。在1到8之中,与8形成互质关系的是1、3、5、7,所以 φ(n) = 4。
也就是说,a的φ(n)次方被n除的余数为1。或者说,a的φ(n)次方减去1,可以被n整除。比如,3和7互质,而7的欧拉函数φ(7)等于6,所以3的6次方(729)减去1,可以被7整除(728/7=104)。
欧拉定理有一个特殊情况。
这就是著名的费马小定理。它是欧拉定理的特例。
模反元素
比如,3和11互质,那么3的模反元素就是4,因为 (3 × 4)-1 可以被11整除。显然,模反元素不止一个, 4加减11的整数倍都是3的模反元素 {...,-18,-7,4,15,26,...},即如果b是a的模反元素,则 b+kn 都是a的模反元素。
RSA算法原理-密钥的生成过程
我们通过一个例子,来理解RSA算法。假设爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢?
第一步,随机选择两个不相等的质数p和q。
爱丽丝选择了61和53。(实际应用中,这两个质数越大,就越难破解。)
第二步,计算p和q的乘积n。
爱丽丝就把61和53相乘。
n = 61×53 = 3233
n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。
第三步,计算n的欧拉函数φ(n)。
根据公式:
φ(n) = (p-1)(q-1)
第四步,随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质。
爱丽丝就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)
第五步,计算e对于φ(n)的模反元素d。
所谓"模反元素"就是指有一个整数d,可以使得ed被φ(n)除的余数为1。
ed ≡ 1 (mod φ(n))
这个式子等价于
ed - 1 = kφ(n)
于是,找到模反元素d,实质上就是对下面这个二元一次方程求解。
ex + φ(n)y = 1
已知 e=17, φ(n)=3120,
17x + 3120y = 1
爱丽丝算出一组整数解为 (x,y)=(2753,-15),即 d=2753。
至此所有计算完成。
第六步,将n和e封装成公钥,n和d封装成私钥。
在爱丽丝的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。
实际应用中,公钥和私钥的数据都采用ASN.1格式表达(实例)。
七、RSA算法的可靠性
回顾上面的密钥生成步骤,一共出现六个数字:
p
q
n
φ(n)
e
d
这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。
那么,有无可能在已知n和e的情况下,推导出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有将n因数分解,才能算出p和q。
结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。
可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基百科这样写道:
"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。
假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。
只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"
举例来说,你可以对3233进行因数分解(61×53),但是你没法对下面这个整数进行因数分解。
12301866845301177551304949
58384962720772853569595334
79219732245215172640050726
36575187452021997864693899
56474942774063845925192557
32630345373154826850791702
61221429134616704292143116
02221240479274737794080665
351419597459856902143413
它等于这样两个质数的乘积:
33478071698956898786044169
84821269081770479498371376
85689124313889828837938780
02287614711652531743087737
814467999489
×
36746043666799590428244633
79962795263227915816434308
76426760322838157396665112
79233373417143396810270092
798736308917
事实上,这大概是人类已经分解的最大整数(232个十进制位,768个二进制位)。比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。
八、加密和解密
有了公钥和密钥,就能进行加密和解密了。
(1)加密要用公钥 (n,e)
假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。这里需要注意,m必须是整数(字符串可以取ascii值或unicode值),且m必须小于n。
所谓"加密",就是算出下式的c:
me ≡ c (mod n)
爱丽丝的公钥是 (3233, 17),鲍勃的m假设是65,那么可以算出下面的等式:
6517 ≡ 2790 (mod 3233)
于是,c等于2790,鲍勃就把2790发给了爱丽丝。
(2)解密要用私钥(n,d)
爱丽丝拿到鲍勃发来的2790以后,就用自己的私钥(3233, 2753) 进行解密。可以证明,下面的等式一定成立:
cd ≡ m (mod n)
也就是说,c的d次方除以n的余数为m。现在,c等于2790,私钥是(3233, 2753),那么,爱丽丝算出
27902753 ≡ 65 (mod 3233)
因此,爱丽丝知道了鲍勃加密前的原文就是65。
至此,"加密--解密"的整个过程全部完成。
我们可以看到,如果不知道d,就没有办法从c求出m。而前面已经说过,要知道d就必须分解n,这是极难做到的,所以RSA算法保证了通信安全。
你可能会问,公钥(n,e) 只能加密小于n的整数m,那么如果要加密大于n的整数,该怎么办?有两种解决方法:一种是把长信息分割成若干段短消息,每段分别加密;另一种是先选择一种"对称性加密算法"(比如DES),用这种算法的密钥加密信息,再用RSA公钥加密DES密钥。
九、私钥解密的证明
最后,我们来证明,为什么用私钥解密,一定可以正确地得到m。也就是证明下面这个式子:
cd ≡ m (mod n)
因为,根据加密规则
me ≡ c (mod n)
于是,c可以写成下面的形式:
c = me - kn
将c代入要我们要证明的那个解密规则:
(me - kn)d ≡ m (mod n)
它等同于求证
med ≡ m (mod n)
由于
ed ≡ 1 (mod φ(n))
所以
ed = hφ(n)+1
将ed代入:
mhφ(n)+1 ≡ m (mod n)
接下来,分成两种情况证明上面这个式子。
(1)m与n互质。
根据欧拉定理,此时
mφ(n) ≡ 1 (mod n)
得到
(mφ(n))h × m ≡ m (mod n)
原式得到证明。
(2)m与n不是互质关系。
此时,由于n等于质数p和q的乘积,所以m必然等于kp或kq。
以 m = kp为例,考虑到这时k与q必然互质,则根据欧拉定理,下面的式子成立:
(kp)q-1 ≡ 1 (mod q)
进一步得到
[(kp)q-1]h(p-1) × kp ≡ kp (mod q)
即
(kp)ed ≡ kp (mod q)
将它改写成下面的等式
(kp)ed = tq + kp
这时t必然能被p整除,即 t=t'p
(kp)ed = t'pq + kp
因为 m=kp,n=pq,所以
med ≡ m (mod n)
原式得到证明。