BZOJ1856:[SCOI2010]字符串——题解

https://www.lydsy.com/JudgeOnline/problem.php?id=1856

lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?

问题轻易转换成:一个栈,n次入栈,m次出栈,多少种合法的方法。

答案为C(n+m,m)-C(n+m,m-1)。

证明方法和卡特兰数证明方法大致相同:https://blog.youkuaiyun.com/qq_26525215/article/details/51453493

所以这就是一道辣鸡结论题。

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int p=20100403;
const int N=2e6+5;
inline int read(){
    int X=0,w=0;char ch=0;
    while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
    while(isdigit(ch))X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
    return w?-X:X;
}
int jc[N],inv[N];
inline int qpow(int k,int n){
    int res=1;
    while(n){
    if(n&1)res=(ll)res*k%p;
    k=(ll)k*k%p;n>>=1;
    }
    return res;
}
inline int C(int n,int m){
    return (ll)jc[n]*inv[m]%p*inv[n-m]%p;
}
inline void init(int n){
    jc[0]=1;
    for(int i=1;i<=n;i++)jc[i]=(ll)jc[i-1]*i%p;
    inv[n]=qpow(jc[n],p-2);
    for(int i=n-1;i;i--)inv[i]=(ll)inv[i+1]*(i+1)%p;
    inv[0]=1;
}
inline int sub(int a,int b){
    a-=b;if(a<0)a+=p;return a;
}
int main(){
    init(2e6);
    int n=read(),m=read();
    if(m>n){puts("0");return 0;}
    int ans=sub(C(n+m,m),C(n+m,m-1));
    printf("%d\n",ans);
    return 0;
}

+++++++++++++++++++++++++++++++++++++++++++

 +本文作者:luyouqi233。               +

 +欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

转载于:https://www.cnblogs.com/luyouqi233/p/9159594.html

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带良好的时频分辨率,被广泛应用于雷达通信系统。FRFT能够更精准地捕捉LFM信号的时间频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算科学计算工具,拥有丰富的函数库用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值