P4491 [HAOI2018]染色

本文深入探讨了使用容斥原理解决特定数学问题的方法,并结合NTT(快速傅里叶变换的一种变体)进行高效计算。通过详细解析公式与代码实现,阐述了如何计算元素个数等于特定值的情况总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

我觉得自己的数学也是够差的……一点思路也没有……

考虑容斥,首先\(lim=min(m,n/S)\),设\(f[i]\)表示出现恰好\(S\)次的元素大于等于\(i\)种的情况,我们随便选\(i\)种颜色放\(S\)次,选的方法数有\(C_m^i\)种,然后染色可以看做是一个类似全排列的东西,每连续的几个染上同样的颜色,那么方案数为\(\frac{n!}{(S!)^i(n-S*i)!}\),前面颜色已经选定了,后面的每个有\(m-i\)种颜色可选,所以还要乘上一个\((m-i)^{n-S*i}\)

综上,可得\[f_i=C_m^i\frac{n!}{(S!)^i(n-S*i)!}(m-i)^{n-S*i}\]
然后考虑容斥,设\(g_i\)表示元素个数恰好等于\(i\)的情况总数,那么根据容斥原理,有\[g_i=\sum_{j=i}^{lim}(-1)^{j-i}C_j^if_j\]
然后开始推柿子\[g_i=\sum_{j=i}^{lim}\frac{(-1)^{j-i}j!}{i!(j-i)!}f_j\]
\[g_ii!=\sum_{j=i}^{lim}\frac{(-1)^{j-i}}{(j-i)!}f_jj_!\]

于是定义多项式\(F_i=f_jj!\)\(A_i=\frac{(-1)^{n-i}}{(n-i)!}\)\(G_{i+lim}=g_ii!\),那么不难发现上面那个式子其实是个卷积,即\[G_{lim+i}=\sum_{j+k=lim+i}A_jF_k\]

于是用\(NTT\)计算出\(G\),然后更新答案即可

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
    R int res,f=1;R char ch;
    while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
    for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
    return res*f;
}
char sr[1<<21],z[20];int K=-1,Z=0;
inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
void print(R int x){
    if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
    while(z[++Z]=x%10+48,x/=10);
    while(sr[++K]=z[Z],--Z);sr[++K]='\n';
}
const int N=5e5+5,M=1e7+5,P=1004535809,Gi=334845270;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
    R int res=1;
    for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
    return res;
}
int A[N],B[N],w[N],fac[M],inv[M],r[N],O[N],n,m,S,lim,len=1,l,ans;
inline int C(R int n,R int m){
    if(m>n)return 0;
    return mul(fac[n],mul(inv[m],inv[n-m]));
}
void init(){
    inv[0]=fac[0]=fac[1]=1;fp(i,2,lim)fac[i]=mul(fac[i-1],i);
    inv[lim]=ksm(fac[lim],P-2);fd(i,lim-1,1)inv[i]=mul(inv[i+1],i+1);
}
void NTT(int *A,int ty){
    fp(i,0,len-1)if(i<r[i])swap(A[i],A[r[i]]);
    for(R int mid=1;mid<len;mid<<=1){
        R int I=(mid<<1),Wn=ksm(ty==1?3:Gi,(P-1)/I);O[0]=1;
        fp(i,1,mid-1)O[i]=mul(O[i-1],Wn);
        for(R int j=0;j<len;j+=I)for(R int k=0;k<mid;++k){
            int x=A[j+k],y=mul(O[k],A[j+k+mid]);
            A[j+k]=add(x,y),A[j+k+mid]=dec(x,y);
        }
    }if(ty==-1)for(R int i=0,inv=ksm(len,P-2);i<len;++i)A[i]=mul(A[i],inv);
}
int main(){
//  freopen("testdata.in","r",stdin);
    n=read(),m=read(),S=read(),lim=max(n,m);
    init();fp(i,0,m)w[i]=read();lim=min(m,n/S);
    fp(i,0,lim)A[i]=mul(C(m,i),mul(fac[n],mul(ksm(m-i,n-S*i),mul(fac[i],ksm(mul(ksm(fac[S],i),fac[n-S*i]),P-2)))));
    fp(i,0,lim){
        A[i]=mul(C(m,i),mul(fac[n],ksm(m-i,n-S*i)));
        A[i]=mul(A[i],mul(fac[i],ksm(mul(ksm(fac[S],i),fac[n-S*i]),P-2)));
    }
    fp(i,0,lim){
        B[i]=inv[lim-i];
        if((lim-i)&1)B[i]=P-B[i];
    }while(len<=lim+lim)len<<=1,++l;
    fp(i,0,len-1)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
    NTT(A,1),NTT(B,1);
    fp(i,0,len-1)A[i]=mul(A[i],B[i]);
    NTT(A,-1);fp(i,0,lim)ans=add(ans,mul(w[i],mul(A[lim+i],inv[i])));
    printf("%d\n",ans);return 0;
}

转载于:https://www.cnblogs.com/bztMinamoto/p/10176843.html

# P2341 [USACO03FALL / HAOI2006] 受欢迎的牛 G ## 题目背景 本题测试数据已修复。 ## 题目描述 每头奶牛都梦想成为牛棚里的明星。被所有奶牛喜欢的奶牛就是一头明星奶牛。所有奶牛都是自恋狂,每头奶牛总是喜欢自己的。奶牛之间的“喜欢”是可以传递的——如果 $A$ 喜欢 $B$,$B$ 喜欢 $C$,那么 $A$ 也喜欢 $C$。牛栏里共有 $N$ 头奶牛,给定一些奶牛之间的爱慕关系,请你算出有多少头奶牛可以当明星。 ## 输入格式 第一行:两个用空格分开的整数:$N$ 和 $M$。 接下来 $M$ 行:每行两个用空格分开的整数:$A$ 和 $B$,表示 $A$ 喜欢 $B$。 ## 输出格式 一行单独一个整数,表示明星奶牛的数量。 ## 输入输出样例 #1 ### 输入 #1 ``` 3 3 1 2 2 1 2 3 ``` ### 输出 #1 ``` 1 ``` ## 说明/提示 只有 $3$ 号奶牛可以做明星。 【数据范围】 对于 $10\%$ 的数据,$N\le20$,$M\le50$。 对于 $30\%$ 的数据,$N\le10^3$,$M\le2\times 10^4$。 对于 $70\%$ 的数据,$N\le5\times 10^3$,$M\le5\times 10^4$。 对于 $100\%$ 的数据,$1\le N\le10^4$,$1\le M\le5\times 10^4$。 c++,不要vector,变量名小写5字符以内,需要函数:void Tarjan(int u) { dfn[u] = low[u] = ++num; //初始化结点u的dfn和low值 st[++top] = u; //将结点u压入栈中 vis[u] = 1; //标记u在栈中 for (int i = head[u]; i; i = e[i].nxt) { //枚举u的所有出边 int v = e[i].to; if (!dfn[v]) { //结点v未被访问过,说明是树枝边 Tarjan(v); low[u] = min(low[u], low[v]); } else if (vis[v]) //v在栈中,是返祖边 low[u] = min(low[u], dfn[v]); // } int tmp = 0; if (low[u] == dfn[u]) { //结点u是该强连通分量的根 ++cnt; //强连通分量数量加一 do { //将当前结点前所有还在栈空间内的结点都归为当前强连通分量 tmp = st[top--]; vis[tmp] = 0; color[tmp] = cnt; //将同一个强连通分量内的点均标记为相同编号,也可理解为染色 } while(tmp != u); } } set<pair<int, int> > mark;//记录是否连接过 void solution() { //通过tarjan算法将所有强连通分量分配编号 for (int i = 1; i <= n; i++) if (!dfn[i]) Tarjan(i); //遍历所有连边,判断相邻两个结点是否所属同一强连通分量 for (int u = 1, v; u <= n; u++) { for (int i = head[u]; i; i = e[i].nxt) { v = e[j].to; //当相邻两个结点不属于同一强连通分量,则以强连通分量编号为点建边 if (color[u] != color[v] && mark[{color[u], color[v]}].find != mark.end()) { link(color[u], color[v]); mark.insert({color[u], color[v]}); } } } }
最新发布
08-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值