再窥--单链表和顺序存储

本文详细介绍了如何通过单链表实现删除操作,并探讨了在实际应用中选择单链表而非顺序存储的原因。同时,文章对比了不同节点操作方式的区别,并讨论了其在具体场景中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先接一下上次的笔记,实现对单链表进行删除

思路实现

  1. 声明结点p和q
  2. 首节点赋值给p,下一个结点赋值给q
  3. 循环执行释放p,将q赋值给p的操作(删除第一个结点后,之后的结点就是首节点了,以此类推)
string ClearList(Node *L){
    Node *p,*q;
    p = L->next;//指向首节点 
    while(p){
        q = p->next;//q承接下一个节点
        delete p;//删除 上一个 节点
        p = q; 
    }
    L->next = NULL;//成为了空表
    return "Clear"; 
}

问题

delete p;p = p->next;不可以代替循环体吗?

注意delete(p) 释放了数据域和指针域,所以无法记录下一节点了。

应用

  1. 小网站的用户信息。除了注册外,基本是读取。所以顺序存储好一些。
  2. 像一些插入/删除操作多的,比如游戏装备,那么肯定是单链表好些
  3. 需要更高的需求和性能的平衡,还是需要其他复杂的数据结构

转载于:https://www.cnblogs.com/AsuraDong/p/6951543.html

### JMU 数据结构 单链表逆置 PTA 题解 单链表的逆置可以通过多种方法实现,其中一种常见的方法是通过头插法来完成。这种方法的核心思想是在构建新链表的过程中,每次都将当前节点插入到新链表的头部,从而使得最终的新链表顺序原链表相反。 以下是基于PTA平台可能涉及的单链表逆置操作的具体实现: #### 实现代码 ```c #include <stdio.h> #include <stdlib.h> typedef struct Node { char data; struct Node* next; } LinkNode; // 初始化单链表 LinkNode* InitList() { LinkNode* L = (LinkNode*)malloc(sizeof(LinkNode)); L->next = NULL; return L; } // 尾插法建立单链表 void CreateListTail(LinkNode* L, int n) { LinkNode *p, *r = L; for(int i = 0; i < n; ++i){ p = (LinkNode*)malloc(sizeof(LinkNode)); scanf(" %c", &p->data); p->next = NULL; r->next = p; r = p; } } // 输出单链表 void PrintList(LinkNode* L) { LinkNode* p = L->next; while(p != NULL){ printf("%c ", p->data); p = p->next; } printf("\n"); } // 获取单链表长度 int GetLength(LinkNode* L) { int length = 0; LinkNode* p = L->next; while(p != NULL){ length++; p = p->next; } return length; } // 判断单链表是否为空 bool IsEmpty(LinkNode* L) { return L->next == NULL ? true : false; } // 查找指定位置的元素 char FindKthElement(LinkNode* L, int k) { LinkNode* p = L->next; int index = 1; while(p && index < k){ p = p->next; index++; } if(index == k && p) return p->data; else{ printf("Index out of range.\n"); exit(1); } } // 插入元素 void InsertElement(LinkNode* L, int pos, char value) { LinkNode* p = L; int index = 0; while(p && index < pos - 1){ p = p->next; index++; } if(!p || index >= pos - 1){ LinkNode* newNode = (LinkNode*)malloc(sizeof(LinkNode)); newNode->data = value; newNode->next = p->next; p->next = newNode; }else{ printf("Invalid position to insert.\n"); exit(1); } } // 删除指定位置的元素 void DeleteElement(LinkNode* L, int pos) { LinkNode* p = L; int index = 0; while(p->next && index < pos - 1){ p = p->next; index++; } if(p->next){ LinkNode* q = p->next; p->next = q->next; free(q); }else{ printf("Invalid position to delete.\n"); exit(1); } } // 单链表逆置 void ReverseList(LinkNode* L) { LinkNode* prev = NULL; LinkNode* current = L->next; LinkNode* next_node = NULL; L->next = NULL; // 头结点指向NULL while(current != NULL){ next_node = current->next; current->next = prev; prev = current; current = next_node; } L->next = prev; // 新链表头指针赋给L->next } // 主函数演示 int main(){ int n; LinkNode* L = InitList(); printf("Enter the number of elements and then the characters:\n"); scanf("%d", &n); CreateListTail(L, n); printf("Original List: "); PrintList(L); ReverseList(L); printf("Reversed List: "); PrintList(L); return 0; } ``` 上述代码实现了单链表的基本功能,并提供了`ReverseList`函数用于执行链表的逆置操作[^3]。此函数利用迭代方式逐步调整每个节点的`next`指针方向,从而使整个链表反转。 #### 解决方案说明 - **初始化**:创建一个带头结点的空链表。 - **尾插法建表**:按照输入数据逐个插入到链表尾部。 - **打印链表**:遍历并输出链表中的所有元素。 - **获取长度**:统计链表中有效节点的数量。 - **判断是否为空**:检查链表是否有任何实际数据节点。 - **查找特定位置元素**:定位到目标索引处的节点并返回其值。 - **插入/删除元素**:分别支持在任意位置插入或删除节点的操作。 - **逆置链表**:通过改变各节点之间的连接关系实现整体倒序排列。 ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值