[ARC097F]Monochrome Cat

本文探讨了一种算法,旨在解决将树形结构中所有节点颜色统一为黑色所需的最少操作次数问题。通过删除黑色叶节点、优化路径选择及调整节点颜色,文章详细阐述了如何达到目标状态的同时,保持操作次数最少。该算法适用于处理包含黑白两种颜色节点的树形结构。

题意:一棵树,每个节点是黑色或白色,你可以从任意节点开始进行一些操作并在任意节点结束,如果当前在$x$,那么一次操作可以是:1.走到相邻节点$y$并翻转$y$的颜色,2.翻转$x$的颜色,问把所有节点都变黑最少要多少次操作

首先当然要把黑色叶子全部删掉,这个类似拓扑排序一样做即可

然后证一个小结论:不会有一条边被经过$\gt2$次

设$(x,y)$被经过$3$次,那么操作序列为$A\Rightarrow(x\rightarrow y)\Rightarrow B\Rightarrow(y\rightarrow x)\Rightarrow C\Rightarrow(x\rightarrow y)\Rightarrow D$,我们可以把操作序列变为$A\Rightarrow C\Rightarrow\text~x\Rightarrow(x\rightarrow y)\Rightarrow\text~y\Rightarrow B\Rightarrow D$,这样等价并且没有增加操作次数

所以最优解形如:选定起点$s$和终点$t$,$s\rightarrow t$路径上的边只经过一次,其他边经过两次,并在过程中适时使用操作$2$

更进一步:存在最优解使得$s,t$都是叶子

假设起点为$x$,终点为$y$且$y$不是叶子,$z$是$y$往远离$x$方向的第一个节点,那么把原来的$(y\rightarrow z)\Rightarrow X\Rightarrow(z\rightarrow y)$变成$\text~y\Rightarrow(y\rightarrow z)\Rightarrow X$即可,同样不增加操作次数

现在考虑怎么求答案,如果$s=t$,设$d_x$为$x$的度数并记$v_x=\left[(d_x\equiv1(\bmod2),c_x=B)\text{ or }(d_x\equiv0(\bmod2),c_x=W)\right]$,那么答案是$2|E|+\sum\limits_xv_x$

当$t$移动时,$s\rightarrow t$上的边经过次数$-1$,$s\rightarrow t$这条链上$\neq t$的点(以下记这条链为$[s,t)$)的贡献也要重新计算,要加上$-\text{dis}(s,t)+\sum\limits_{x\in[s,t)}-[v_x=1]+[v_x=0]$

所以如果我们给每个点$x$一个权值$-[v_x=1]+[v_x=0]-1$,找到最小的叶子到叶子的链即可,dfs一遍统计答案即可

monochrome:单色的,黑白的

#include<stdio.h>
#include<algorithm>
using namespace std;
int h[100010],nex[200010],to[200010],M,n;
void add(int a,int b){
	M++;
	to[M]=b;
	nex[M]=h[a];
	h[a]=M;
}
int d[100010],q[100010];
bool del[100010];
char s[100010];
void topsort(){
	int head,tail,x,i;
	head=1;
	tail=0;
	for(i=1;i<=n;i++){
		if(s[i]=='B'&&d[i]==1)q[++tail]=i;
	}
	while(head<=tail){
		x=q[head++];
		del[x]=1;
		for(i=h[x];i;i=nex[i]){
			if(d[to[i]])d[to[i]]--;
			if(s[to[i]]=='B'&&d[to[i]]==1&&!del[to[i]])q[++tail]=to[i];
		}
	}
}
int f[100010],sum,mn;
int tp(int x){return(d[x]&1)^(s[x]=='W');}
int val(int x){return tp(x)==1?-2:0;}
void dfs(int fa,int x){
	sum+=(tp(x)==1)+2;
	f[x]=val(x);
	for(int i=h[x];i;i=nex[i]){
		if(to[i]!=fa&&!del[to[i]]){
			dfs(x,to[i]);
			mn=min(mn,f[x]+f[to[i]]);
			f[x]=min(f[x],f[to[i]]+val(x));
		}
	}
}
int main(){
	int i,x,y;
	scanf("%d",&n);
	for(i=1;i<n;i++){
		scanf("%d%d",&x,&y);
		add(x,y);
		add(y,x);
		d[x]++;
		d[y]++;
	}
	scanf("%s",s+1);
	topsort();
	for(x=1;x<=n;x++){
		if(!del[x])break;
	}
	if(x>n)
		putchar('0');
	else{
		dfs(0,x);
		sum-=2;
		printf("%d",sum+mn);
	}
}

转载于:https://www.cnblogs.com/jefflyy/p/9823029.html

一、数据采集层:多源人脸数据获取 该层负责从不同设备 / 渠道采集人脸原始数据,为后续模型训练与识别提供基础样本,核心功能包括: 1. 多设备适配采集 实时摄像头采集: 调用计算机内置摄像头(或外接 USB 摄像头),通过OpenCV的VideoCapture接口实时捕获视频流,支持手动触发 “拍照”(按指定快捷键如Space)或自动定时采集(如每 2 秒采集 1 张),采集时自动框选人脸区域(通过Haar级联分类器初步定位),确保样本聚焦人脸。 支持采集参数配置:可设置采集分辨率(如 640×480、1280×720)、图像格式(JPG/PNG)、单用户采集数量(如默认采集 20 张,确保样本多样性),采集过程中实时显示 “已采集数量 / 目标数量”,避免样本不足。 本地图像 / 视频导入: 支持批量导入本地人脸图像文件(支持 JPG、PNG、BMP 格式),自动过滤非图像文件;导入视频文件(MP4、AVI 格式)时,可按 “固定帧间隔”(如每 10 帧提取 1 张图像)或 “手动选择帧” 提取人脸样本,适用于无实时摄像头场景。 数据集对接: 支持接入公开人脸数据集(如 LFW、ORL),通过预设脚本自动读取数据集目录结构(按 “用户 ID - 样本图像” 分类),快速构建训练样本库,无需手动采集,降低系统开发与测试成本。 2. 采集过程辅助功能 人脸有效性校验:采集时通过OpenCV的Haar级联分类器(或MTCNN轻量级模型)实时检测图像中是否包含人脸,若未检测到人脸(如遮挡、侧脸角度过大),则弹窗提示 “未识别到人脸,请调整姿态”,避免无效样本存入。 样本标签管理:采集时需为每个样本绑定 “用户标签”(如姓名、ID 号),支持手动输入标签或从 Excel 名单批量导入标签(按 “标签 - 采集数量” 对应),采集完成后自动按 “标签 - 序号” 命名文件(如 “张三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值