NLP入门(三)词形还原(Lemmatization)

词形还原是文本预处理的关键步骤,它不同于词干提取。Python的nltk库中的WordNet提供词形还原功能,通过wnl.lemmatize()函数结合单词词性进行操作。了解和正确使用POS标记获取单词词性对提高词形还原效果至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  词形还原(Lemmatization)是文本预处理中的重要部分,与词干提取(stemming)很相似。
  简单说来,词形还原就是去掉单词的词缀,提取单词的主干部分,通常提取后的单词会是字典中的单词,不同于词干提取(stemming),提取后的单词不一定会出现在单词中。比如,单词“cars”词形还原后的单词为“car”,单词“ate”词形还原后的单词为“eat”。
  在Python的nltk模块中,使用WordNet为我们提供了稳健的词形还原的函数。如以下示例Python代码:

from nltk.stem import WordNetLemmatizer

wnl = WordNetLemmatizer()
# lemmatize nouns
print(wnl.lemmatize('cars', 'n'))
print(wnl.lemmatize('men', 'n'))

# lemmatize verbs
print(wnl.lemmatize('running', 'v'))
print(wnl.lemmatize('ate', 'v'))

# lemmatize adjectives
print(wnl.lemmatize('saddest', 'a'))
print(wnl.lemmatize('fancier', 'a'))

输出结果如下:

car
men
run
eat
sad
fancy

在以上代码中,wnl.lemmatize()函数可以进行词形还原,第一个参数为单词,第二个参数为该单词的词性,如名词,动词,形容词等,返回的结果为输入单词的词形还原后的结果。
  词形还原一般是简单的,但具体我们在使用时,指定单词的词性很重要,不然词形还原可能效果不好,如以下代码:

from nltk.stem import WordNetL
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值