Wannafly挑战赛25游记

本文精选了Wannafly挑战赛中的四道算法题目,包括因子求解、面积计算、期望操作数及游戏策略分析,提供了详细的解题思路与源代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Wannafly挑战赛25游记

A - 因子

题目大意:

\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\)并且\(p^{k+1}\not|x\)的因子。

思路:

枚举\(p\)的每一个质因数\(q\),求出它在\(n!\)出现次数\(/p\)中出现次数,取\(\min\)即可。对于一个质因数\(q\),在\(n!\)中出现的次数等于\(\sum_{i=1}^{\inf}\frac n{q^i}\)

源代码:

#include<cstdio>
#include<cctype>
#include<climits>
#include<algorithm>
typedef long long int64;
inline int64 getint() {
    register char ch;
    while(!isdigit(ch=getchar()));
    register int64 x=ch^'0';
    while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
    return x;
}
int main() {
    int64 m=getint(),p=getint(),k=LLONG_MAX;
    for(register int64 i=2;i<=p;i++) {
        if(p%i==0) {
            int64 tmp=0,n=m,cnt=0;
            while(n) {
                tmp+=n/i;
                n/=i;
            }
            while(p%i==0) {
                p/=i;
                cnt++;
            }
            k=std::min(k,tmp/cnt);
        }
    }
    printf("%lld\n",k);
    return 0;
}

B - 面积并

题目大意:

有一个正\(n\)边形,它的外接圆的圆心位于原点,半径为\(l\)。以原点为圆心,\(r\)为半径作一个圆,求圆和这个正\(n\)边形的面积并。

思路:

割补法直接算即可。注意精度问题。

源代码:

#include<cmath>
#include<cstdio>
#include<cctype>
typedef long long int64;
inline int64 getint() {
    register char ch;
    while(!isdigit(ch=getchar()));
    register int64 x=ch^'0';
    while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
    return x;
}
long double n,l,r,y;
int main() {
    n=getint(),l=getint(),r=getint();
    y=l*cosl(M_PIl/n);
    if(r>l) {
        printf("%.2Lf\n",M_PIl*r*r);
        return 0;
    }
    if(r<y) {
        printf("%.2Lf\n",.5*l*l*n*sinl(M_PIl*2/n));
        return 0;
    }
    printf("%.2Lf\n",r*r*acosl(y/r)*n+y*(sqrtl(l*l-y*y)-sqrtl(r*r-y*y))*n);
    return 0;
}

C - 期望操作数

题目大意:

\(T(T\le10^6)\)组询问\(x,q(x,q\le10^7)\),每次操作将\(x\)变成\([x,q]\)中的一个随机整数,求\(x\)变到\(q\)期望需要多少次操作。

思路:

显然\(x\to q\)相当于\(0\to x-q\)

如果从\(0\)开始操作,\(f_i\)表示变成\(i\)的期望次数,那么\(f_i=\frac{\sum_{j=0}^if_i}{i+1}+1\)

变形得:\(f_i=\frac{1+\sum_{j=0}^{i-1}f_i}{i}+1\)

前缀和优化预处理\(f\)即可。

源代码:

#include<cstdio>
#include<cctype>
inline int getint() {
    register char ch;
    while(!isdigit(ch=getchar()));
    register int x=ch^'0';
    while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
    return x;
}
typedef long long int64;
const int N=1e7+1,mod=998244353;
int f[N],g[N],inv[N];
int main() {
    inv[1]=1;
    for(register int i=2;i<N;i++) {
        inv[i]=(int64)(mod-mod/i)*inv[mod%i]%mod;
    }
    for(register int i=1;i<N;i++) {
        f[i]=(int64)(g[i-1]+i+1)*inv[i]%mod;
        (g[i]=g[i-1]+f[i])%=mod;
    }
    for(register int T=getint();T;T--) {
        const int x=getint(),q=getint();
        printf("%d\n",f[q-x]);
    }
    return 0;
}

D - 玩游戏

题目大意:

有一张\(n\)个点\(m\)条边的带正权的简单无向图,其中除了\(1\)号点和\(n\)号点每个点度数小于等于\(2\)

A和B轮流操作,A先手,每次操作的人可以选择一条仍然存在的边,并且使得边权减\(1\)。如果有一条边边权减为了\(0\),它会立即消失。

\(1\)\(n\)不连通时,上一个操作的人输。问A是否有必胜策略。

思路:

首先给出的图相当于若干条连接\(1\)\(n\)的不相交的链,其余边都和\(1\)\(n\)的连通性无关。

在结束游戏前的最后一步一定是剩下一条边权全是\(1\)的链。如果剩下的最后一条路径确定了,游戏的总步数也确定了,那么先后手的胜负也确定了。因此我们可以通过链上的边数的奇偶性来判断这条连是谁的必胜路径。

那么双方的策略就是尽可能切断使对方必胜的路径。切断一条路径需要的步数是这条路径上的权值的最小值。我们只需要比较双方切断对方必胜的路径所需要的步数即可。

源代码:

#include<cstdio>
#include<cctype>
#include<vector>
#include<climits>
inline int getint() {
    register char ch;
    while(!isdigit(ch=getchar()));
    register int x=ch^'0';
    while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
    return x;
}
typedef long long int64;
const int N=1e5+1;
int n,m;
int64 sum[N],cnt[2];
struct Edge {
    int to,w;
};
std::vector<Edge> e[N];
inline void add_edge(const int &u,const int &v,const int &w) {
    e[u].push_back((Edge){v,w});
    e[v].push_back((Edge){u,w});
}
void dfs(const int &x,const int &par,const int &dep,const int &min) {
    if(x==n) {
        sum[dep]+=min;
        return;
    }
    for(auto &j:e[x]) {
        const int &y=j.to,&w=j.w;
        if(y==par) continue;
        dfs(y,x,dep+1,std::min(min,w));
    }
}
int main() {
    n=getint(),m=getint();
    int64 tot=0;
    for(register int i=0;i<m;i++) {
        const int u=getint(),v=getint(),w=getint();
        add_edge(u,v,w);
        tot+=w;
    }
    dfs(1,0,0,INT_MAX);
    for(register int i=1;i<=n;i++) {
        cnt[i&1]+=sum[i];
    }
    puts(cnt[tot&1]<=cnt[!(tot&1)]?"Yes":"No");
    return 0;
}

转载于:https://www.cnblogs.com/skylee03/p/9726194.html

一、综合实战—使用极轴追踪方式绘制信号灯 实战目标:利用对象捕捉追踪和极轴追踪功能创建信号灯图形 技术要点:结合两种追踪方式实现精确绘图,适用于工程制图中需要精确定位的场景 1. 切换至AutoCAD 操作步骤: 启动AutoCAD 2016软件 打开随书光盘中的素材文件 确认工作空间为"草图与注释"模式 2. 绘图设置 1)草图设置对话框 打开方式:通过"工具→绘图设置"菜单命令 功能定位:该对话框包含捕捉、追踪等核心绘图辅助功能设置 2)对象捕捉设置 关键配置: 启用对象捕捉(F3快捷键) 启用对象捕捉追踪(F11快捷键) 勾选端点、中心、圆心、象限点等常用捕捉模式 追踪原理:命令执行时悬停光标可显示追踪矢量,再次悬停可停止追踪 3)极轴追踪设置 参数设置: 启用极轴追踪功能 设置角度增量为45度 确认后退出对话框 3. 绘制信号灯 1)绘制圆形 执行命令:"绘图→圆→圆心、半径"命令 绘制过程: 使用对象捕捉追踪定位矩形中心作为圆心 输入半径值30并按Enter确认 通过象限点捕捉确保圆形位置准确 2)绘制直线 操作要点: 选择"绘图→直线"命令 捕捉矩形上边中点作为起点 捕捉圆的上象限点作为终点 按Enter结束当前直线命令 重复技巧: 按Enter可重复最近使用的直线命令 通过圆心捕捉和极轴追踪绘制放射状直线 最终形成完整的信号灯指示图案 3)完成绘制 验证要点: 检查所有直线是否准确连接圆心和象限点 确认极轴追踪的45度增量是否体现 保存绘图文件(快捷键Ctrl+S)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值