数学 1001 KK's Steel
类似斐波那契求和
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include <map>
#include <queue>
typedef long long ll;
const int N = 1e5 + 5;
const int MOD = 1e9 + 7;
ll run(ll n) {
ll a = 1, b = 2, c;
ll sum = 3, ret = 2;
while (sum < n) {
c = a + b;
if (sum + c < n) {
sum += c;
a = b; b = c;
ret++;
}
if (sum + c > n) return ret;
if (sum + c == n) return ret + 1;
}
return ret;
}
int main(void) {
int T; scanf ("%d", &T);
while (T--) {
ll n; scanf ("%I64d", &n);
if (n <= 2) puts ("1");
else {
ll ans = run (n);
printf ("%I64d\n", ans);
}
}
return 0;
}
数学 1002 KK's Point
圆上四个点连线能成圆内一个点,所以答案就是comb (n, 4) + n
#include <cstdio>
int main(void) {
int T; scanf ("%d", &T);
while (T--) {
int n; scanf ("%d", &n);
if (n < 4) printf ("%d\n", n);
else {
unsigned long long ans = 1;
ans = ans * n * (n - 1) / 2 * (n - 2) / 3 * (n - 3) / 4 + n;
printf ("%I64d\n", ans);
}
}
return 0;
}
还有自己想出来的结论
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include <map>
#include <queue>
typedef long long ll;
const int N = 1e5 + 5;
const int MOD = 1e9 + 7;
ll fun(int x) {
return 1ll * (1 + x) * x / 2;
}
int main(void) {
int T; scanf ("%d", &T);
while (T--) {
int n; scanf ("%d", &n);
ll ans = n;
n -= 3;
int t = 1;
while (n >= 1) {
ans += fun (n) * t;
n--; t++;
}
printf ("%I64d\n", ans);
}
return 0;
}
DP 1004 KK's Number
显然,每个人的策略就是都会拿剩下的数中最大的某几个数
假如我们用f[i]表示当剩下i个数的时候先手得分-后手得分的最小值
那么得到f[i]=max\left(a[j+1]-f[j] \right)(1<j\leq i)f[i]=max(a[j+1]−f[j])(1<j≤i)
但是这样做,是要超时的
我们不妨简单转换一下 f[i]=_max; _max=max(_max,a[i+1]-f[i]);
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include <map>
#include <queue>
typedef long long ll;
const int N = 5e4 + 5;
const int MOD = 1e9 + 7;
int a[N];
long long dp[N];
int main(void) {
int T; scanf ("%d", &T);
while (T--) {
int n; scanf ("%d", &n);
for (int i=0; i<n; ++i) scanf ("%d", &a[i]);
std::sort (a, a+n);
dp[0] = a[0];
for (int i=1; i<n; ++i) {
dp[i] = std::max (dp[i-1], a[i] - dp[i-1]);
}
printf ("%I64d\n", dp[n-1]);
}
return 0;
}