POJ1797 Heavy Transportation

本文介绍了一种基于Dijkstra算法变形的最大流量路径问题解决方案,旨在找出从起点到终点的最大运输重量限制,适用于解决城市规划中道路最大承载量的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                                                                Heavy Transportation
Time Limit: 3000MS Memory Limit: 30000K
Total Submissions: 15595 Accepted: 4057

Description

Background
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany
 
 
思路:给出含有N个点的无向图,以及点之间的权重(可以看做通过量),点从1开始编号,然后求从点1到点N的最大的通过量。
       可以运用DIJKSTRA的变形来求解。
 
 
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <map>
#define MAXINT 99999999

#define MININT -1

using namespace std;



int data[1000+1][1000+1];
int vis[1000+1];
int lowcost[1000+1];
int d[1000+1];


int minn(int x,int y)
{
    if(x>y)
    return y;
    return x;
}






int main()
{
    
    int n,m;
    int i,j,k;
    int t;
    
    scanf("%d",&t);
    getchar();
    int tt;
    for(tt=1;tt<=t;tt++)
    {
                        scanf("%d%d",&n,&m);
                        getchar();
                        
                        for(i=1;i<=n;i++)
                        for(j=1;j<=n;j++)
                        data[i][j]=MININT;
                        
                        for(i=0;i<m;i++)
                        {
                                        int a,b,c;
                                        scanf("%d%d%d",&a,&b,&c);
                                        
                                        if(c>data[a][b])
                                        data[b][a]=data[a][b]=c;
                                        
                        }
                        
                        
                        for(i=1;i<=n;i++)
                        {lowcost[i]=data[1][i];vis[i]=0;}
                        
                        vis[1]=1;
                        
                        for(i=1;i<n;i++)
                        {
                                        int maxcost=MININT;
                                        k=-1;
                                        
                                        for(j=1;j<=n;j++)
                                        {
                                                         if((vis[j]==0)&&(maxcost<lowcost[j]))
                                                         {k=j;maxcost=lowcost[j];}
                                        }
                                        
                                        vis[k]=1;
                                        
                                        for(j=1;j<=n;j++)
                                        {
                                                         if(vis[j]==0)
                                                         {
                                                                      int tmp=minn(lowcost[k],data[k][j]);
                                                                      if(tmp>lowcost[j])
                                                                      lowcost[j]=tmp;
                                                         }
                                                                      
                                                       
                                        }
                                        
                                        
                        }
                        
                        
                        
                        
                        
                        printf("Scenario #%d:\n",tt);
                        printf("%d\n\n",lowcost[n]);
    }
                        
                                        
                                        
    
   // system("PAUSE");
    
    return 0;
}

 

 

转载于:https://www.cnblogs.com/zjushuiping/archive/2012/08/07/2627320.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值