HDU 3549 Flow Problem

本文介绍了一个典型的最大流问题,通过增广路算法解决加权有向图中的最大流问题。文章提供了一段完整的C++代码实现,并详细解释了输入输出格式及样例。

Flow Problem

Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 18435 Accepted Submission(s): 8676

Problem Description

Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.

Input

The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)

Output

For each test cases, you should output the maximum flow from source 1 to sink N.

Sample Input

2
3 2
1 2 1
2 3 1
3 3
1 2 1
2 3 1
1 3 1

Sample Output

Case 1: 1
Case 2: 2

Author

HyperHexagon

Source

HyperHexagon’s Summer Gift (Original tasks)

Recommend

zhengfeng | We have carefully selected several similar problems for you: 1532 3572 3416 3081 3491

题意

​ n个点,m条边,求最大流。

解题思路

​ 增广路算法模板题。

代码

#include<stdio.h>
#include<iostream>
#include<vector>
#include<queue>
#include<string.h>
#include<algorithm>
using namespace std;
#define maxn 1005
#define inf 0x3f3f3f3f

int n,m;
struct Edge
{
    int from,to,cap,flow;
    Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f) {}
};
struct EdmondsKarp
{
    vector<Edge> edges;
    vector<int> G[maxn];
    int a[maxn];
    int p[maxn];

    void init(int n)
    {
        for(int i=0; i<n; i++)
            G[i].clear();
        edges.clear();
    }

    void addedge(int from,int to,int cap)
    {
        edges.push_back(Edge(from,to,cap,0));
        edges.push_back(Edge(to,from,0,0));
        int m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }

    int Maxflow(int s,int t)
    {
        int flow=0;
        for(;;)
        {
            memset(a,0,sizeof(a));
            queue<int> q;
            a[s]=inf;
            q.push(s);
            while(!q.empty())
            {
                int x=q.front();
                q.pop();
                for(int i=0; i<G[x].size(); i++)
                {
                    Edge& e=edges[G[x][i]];
                    if(!a[e.to]&&e.cap>e.flow)
                    {
                        p[e.to]=G[x][i];
                        a[e.to]=min(a[x],e.cap-e.flow);
                        q.push(e.to);
                    }
                }
                if(a[t]) break;
            }
            if(!a[t]) break;
            for(int i=t; i!=s; i=edges[p[i]].from)
            {
                edges[p[i]].flow+=a[t];
                edges[p[i]^1].flow-=a[t];
            }
            flow+=a[t];
        }
        return flow;
    }
};
int main()
{
//    freopen("in.txt","r",stdin);
    EdmondsKarp E;
    int t;
    cin>>t;
    for(int k=1; k<=t; k++)
    {
        printf("Case %d: ",k);
        scanf("%d%d",&n,&m);
        E.init(n);
        int a,b,c;
        for(int i=0; i<m; i++)
        {
            cin>>a>>b>>c;
            E.addedge(a,b,c);
        }
        printf("%d\n",E.Maxflow(1,n));
    }
    return 0;
}

转载于:https://www.cnblogs.com/RefrainLi/p/8861416.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值